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1. Random signals and stochastic processes 

 

1.1. Statistical estimation 
 

Estimation of the Uniform distribution law statistical properties 

The vector X contains 1000 samples of the uniform random variable X ~ U(0,1).  Each sample 

corresponds to the realisation of the random variable X. The samples indicate a uniformity, which is 

due to the stationary characteristic of the signal. To show this, the expectation and the standard 

deviation of the signal will be calculated in the following. 

 

For an infinite number of samples, the theoretical expectation of the signal is given by: 
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Its theoretical standard deviation is as shown below. 
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The theoretical expectation and standard deviation are thus constant across the realisations. As a 

consequence, the signal is stationary. On the other hand, the number of samples is practically finite 

so approximations must be used. 

 

 

 

 

1) The expectation is approximated by the sample mean given by 

     
This estimator is computed in MatLab with the mean command.  

 

2) The standard deviation is approximated by the sample estimator given by 

                                                            
This last one is calculated with the std command in MatLab.  

 

The estimates �̂� = 0.4891 and �̂� = 0.2838 result from these commands in MatLab.  

This shows that �̂� and �̂� are accurate estimators, when compared to the theoretical ones. 
 

3) The matrix X1:10 contains 10 realisations of a 1000 samples. The mean and the standard   

deviation are calculated for each of the ten realisation. As shown below, their values do cluster 

around the theoretical value and their bias estimated by  𝐸(𝑋) − �̂� equals to zero.  



 

 
Figure 1: Mean and standard deviation for each realisation 
 

4) The probability density function (PDF) of the signal can be calculated with the command hist. The 

function returns a vector which is then normalized by being divided by its area (using trapz). The 

result is thus a measurement of the density of each realisation.  

 
Figure 2: Plot of the PDF for a uniform distribution, N=1000, bins=50 

 

This is the resulting plot of the results from the hist instruction, for a 1000 samples random variable. 

 



Figure 3: PDF of X, uniform distribution, various N (samples) values: 200, 2000, 20000 and 200000 

Figure 3 shows the estimated PDF converges towards the theoretical PDF as the number of sample 

increases. This is because the theoretical PDF corresponds to signal with an infinity of realisations, 

and having more samples brings the experimental PDF closer to this target theoretical one. 

 

Figure 4: PDF of X, uniform distribution, N=2000 samples, for different frequency bins values 

This last figure highlights that above 50 frequency bins, the estimated PDF is spikier with a lower 

uniformity. The precision of the bin values is enhanced as the total number of frequency bins 

increases. This also lowers the difference between a frequency bin value and the next one’s value. 

Now, as there is a fixed and finite number of samples (2000) produced, for a high level of precision 

chosen, the samples will differ a lot between each other. The distribution will no longer be uniform. 

On the other hand, it is interesting to note that increasing the number of samples N will improve the 

uniformity of the estimated PDF. 

 

 



 

Estimation of the Normal distribution law statistical properties 

5) The vector column X now contains N=1000 realisation of the zero-mean and unit-variance Gaussian 

variable X~ N(0,1) (using command randn). The mean and the standard deviation are computed as in 

the section before, with mean and std. The resulting estimates are �̂� = −0.0689 and �̂� =  0.9937. 

 

The mean and the standard deviation are then computed for each of the 10 realisations of 1000-

samples of random Gaussian noise.  

 
Figure 5: Sample mean and standard deviation of the PDF of X (Gaussian distribution), N=200000, bins=50 

The estimations of the mean and standard deviation both cluster again to the theoretical values of 0 

and 1.0 respectively. Their respective bias is thus equal to zero. 

 

The PDF of the Gaussian variable X is estimated as for the uniformly distributed variable, using the 

command hist. The following plot results from a MatLab estimation of the PDF for N=200000 samples 

and BINS=50 frequency bins. 

 
Figure 6: Sample mean and standard deviation of the PDF of X (Gaussian distribution), N=200000, bins=50 



 

The following figure describes how the estimated PDF varies with the number of samples N.  

 
Figure 7: PDF of X, Gaussian distribution, various N (samples) values: 200, 2000, 20000 and 200000 

An increase in the number of samples will make the PDF converging towards the theoretical PDF.  

In the next figure, several values of frequency bins are tested. This reveals the same effects as for the 

Uniform distribution (see 1.1.4).  
 

 
Figure 8: PDF of X, Gaussian distribution, N=2000 samples, for different frequency bins values 

 

 



1.2. Stochastic processes 

 
The following three random process are generated with the following given Matlab code. 

  

1) The mean and standard deviation are calculated for each process rp1, rp2 and rp3 with the number of 

realizations M=100 and with the number of samples in each realization given by N=100. 

 

 
Figure 9: Sample ensemble average and sample standard deviation across realisations and time for rp1. 

  N=100 and M=100 

 

 

 
 



 
Figure 10: Sample ensemble average and sample standard deviation across realisations and time for rp2. 

  N=100 and M=100 

 

 
Figure 11: Sample ensemble average and sample standard deviation across realisations and time for rp3. 

  N=100 and M=100 

The mean of rp1 varies from 0 to 2 with time (sample), as does its standard deviation between 0 and 

1.45.  Its statistical parameters all vary with time. As a consequence, rp1 cannot be stationary.  

The mean of rp2 changes in the range from 0.49 to 0.57, and its standard deviation varies between 

0.28 and 0.37. These relatively small variations are due to the finite number of samples (as explained 

before). Finally, the mean of rp3 varies between 0.3 and 0.7, and its standard deviation varies between 

0.77 and 0.95.  From these results, we can conclude that the process rp2 and rp3 are stationary.  

 

 

 

 

 

 



3) The statistical properties of each of these processes can be used to verify their stationary status. 

This is done by deriving the theoretical mean and standard deviation for each process. 

Statistical properties of rp1 
The following mathematical expression describes the signal v (rp1): 
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The mean of rp1 is a straight line with a slope of 0.02. 

The standard deviation is 𝝈𝒗 = √𝑬 ((𝒗[𝒏] − 𝑬(𝒗[𝒏]))
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Statistical properties of rp2 
The signal v is now described by: 

 

v[𝒏] = 𝒙𝟎[𝒏]. 𝒙𝟏[𝒏] + 𝒙𝟐[𝒏]  where 𝑥0[𝑛] ~ 𝑈(0,1) − 0.5 

                      𝑥1[𝑛] ~ 𝑈(0,1) 

                          𝑥2[𝑛] ~ 𝑈(0,1) 

hence, we have the mean: 𝑬(𝒗[𝒏]) = 𝑬(𝒙𝟎[𝒏]. 𝒙𝟏[𝒏]) + 𝑬(𝒙𝟐[𝒏]) where 𝑥0[𝑛]. 𝑥1[𝑛] are independent 

       ⇒ 𝐸(𝑣[𝑛]) = 𝐸(𝑥0[𝑛]). 𝐸(𝑥1[𝑛]) + 𝐸(𝑥2[𝑛]) where 𝐸(𝑥0[𝑛]) = 0.5 − 0.5 = 0.0  

⇒ 𝐸(𝑣[𝑛]) = 0 + 0.5 = 0.5 

The standard deviation is 𝝈𝒗 = √𝑬((𝒗[𝒏] − 𝟎. 𝟓)𝟐) = √𝐸(𝑣[𝑛]2 − 𝑣[𝑛] + 0.25) 

        = √𝐸((𝑥0[𝑛]. 𝑥1[𝑛] + 𝑥2[𝑛])2 − (𝑥0[𝑛]. 𝑥1[𝑛] + 𝑥2[𝑛]) + 0.25) 
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Since 𝑥0[𝑛], 𝑥1[𝑛] and 𝑥2[𝑛] are independent, they are also uncorrelated.  

so 𝐸(2𝑥0[𝑛]𝑥1[𝑛]𝑥2[𝑛]) =  2𝐸(𝑥0[𝑛])𝐸(𝑥1[𝑛])𝐸(𝑥2[𝑛]) = 0,   because 𝐸(𝑥0[𝑛]) = 0 

 and thus 𝐸(𝑥0[𝑛]. 𝑥1[𝑛]) = 𝐸(𝑥0[𝑛])𝐸(𝑥1[𝑛]) = 0 
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Statistical properties of rp3 

The signal v is given by the expression  𝒗[𝒏] = 𝟑𝑨 + 𝟎. 𝟓,   where 𝐴 ~ 𝑈(0,1) – 0.5 

The mean is 𝐸(𝑣[𝑛]) = 𝐸(3𝐴 + 0.5) = 3𝐸(𝐴) + 0.5 = 0.5 

and the standard deviation is 𝝈𝒗 = √𝑬 ((𝒗[𝒏] − 𝑬(𝒗[𝒏]))
𝟐

) = √𝐸((3𝐴 + 0.5 − 0.5)2) 

= √9𝐸(𝐴2) = 3𝜎𝑋 ≈ 0.867 



2) The mean and standard deviation are calculated for each process rp1, rp2 and rp3 with the number 

of realizations M=1000 and with the number of samples in each realization given by N=4. The 

following results are obtained: 

 

 
Figure 12: Sample ensemble average and sample standard deviation across realisations and time for rp1. 

  N=1000 and M=4 

 

 

 
Figure 13: Sample ensemble average and sample standard deviation across realisations and time for rp2. 

  N=1000 and M=4 



 
Figure 14: Sample ensemble average and sample standard deviation across realisations and time for rp3. 

  N=1000 and M=4 

 

The process rp3 has its time average of its 4 realisations which matches its expectation. The process 

rp3 is thus ergodic. On the other hand, rp1 and rp2 are not ergodic since their time average vary for 

each of their realisations. 

 

 

 

 
 

1.3. Estimation of probability distributions 
 

1) The function pdf is based on the MatLab hist command. It requires the process to be stationary and 

with time-invariant statistical properties. The function is defined as shown below. 
function [PDF_sample, m] = pdf(X, BINS) 

    if BINS == 0 %by default 

        BINS = 50; 

    end 

    [PDF_sample, m]=hist(X,BINS); 

end 

 

The function returns the array PDF_sample and the array of bins, m.  

This output is then divided by the area (using trapz which requires m) to obtain the density function. 

bar(m,PDF_sample/trapz(m,PDF_sample));  

%The histogram is normalized by the integral of the PDF 

%estimated by a trapezoidal numerical integration (trapz). 
 
The function is tested with the stationary process X=randn(1,N); %Gaussian distribution where 

N=10000; %number of samples and BINS=100; %frequency bins. The following figure shows the 
theoretical and estimated PDFs pf X. 

 

 



 
Figure 15: Theoretical and experimental PDFs for X, obtained with pdf.m, with N=10000 and BINS=100 

2) From the results of part 1.2, only rp3 is ergodic and stationary. The following figure is the result of 

a MatLab script comparing rp3’s theoretical and estimated PDFs for different samples N (100, 1000, 10000).  

As before, the red line represents the theoretical PDF of the process for its associated N value. 

 
Figure 16: Theoretical and experimental PDFs for rp3, with N=100, 1000 and 10000 (BINS=20) 

 

 



As for the Gaussian distributed random variable, an increase in the number of samples makes the 

estimated PDF converging to the theoretical PDF (which is the PDF of x=3A+0.5 where A is a uniform 

random variable with zero-mean). It can hence be deduced that the amplitude of the PDF is 1/3, as the 

amplitude of X varies between -1 and 2. 

3. The pdf function cannot give an accurate estimates for non-stationary process. In the case of process rp3, the 

mean value increases with time. It would is impossible to bound the amplitude of the signal. The correct pdf 

could be estimated by computing the time average for each realizations and computing the pdf of the averaged 

data. 

 

 

 

 

 

 
 

 

 

 

 

 

 

2. Linear stochastic modelling 

 

 
 The autocorrelation function (ACF) of a signal is given by 

 
 
where 𝑋𝑛and 𝑋𝑛 are the realisations of a random variable at different times.  

For ergodic processes, a time average estimates the ACF, with the following estimator: 

  

 

 

2.1. ACF of uncorrelated sequences 

 
1) A 1000 samples white Gaussian noise (WGN) X is generated using the command X=randn(1,N); 

The autocorrelation of the signal X is then calculated with: 
[values,range]=xcorr(X,'unbiased'); 

%range contains the values of t for which the  

%autocorrelation has been calculated. 

 

The results are then plotted and the following is obtained. 



 
Figure 17: Autocorrelation function of white Gaussian noise (WGN) for delays  in [-1000, 1000] 

First of all, the plot from figure 17 describes a symmetry. This can be explained because points with 

equal distance from the zero time delay will have the same absolute delay and as a consequence also 

the same autocorrelation. This plot also describes a peak of amplitude for a zero time delay. With a 

time delay of zero, the signal is basically correlated with itself. This implies that the highest similarity 

is reached for a delay of zero. 

2) 3) The following figure shows the ACF of the white Gaussian noise zoomed for delays smaller than 50.  

   
        Figure 18: ACF of WGN for delays  from -50 to 50.    

 
The ACF is now apparent to the Dirac function. The spike in the amplitude which was found in figure 

17 for large delays (up to 1000) is not present in this view. In fact, as the delay decreases, the samples 

available for comparison are more numerous. Samples cancelling each other in the averaging sum will 

be fewer, so the total sum will be different than zero. As a consequence, the estimator will not be 

accurate from a certain delay. A good empirical bound would be a delay of  
𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠

2
. 

 

 

 

 



2.2. ACF of correlated sequences 

 

1) The 1000-samples WGN vector x is now filtered by a moving average filter of order 9 with unit 

coefficients using the filter command.  The following piece of code is used to do this filtering. 
N=1000; %sample realisation of the WGN 

order=9; %order of the moving average filter 

X=randn(1,N); %white Gaussian noise 

y=filter(ones(order,1),[1],X); 

[values,range]=xcorr(y,'unbiased'); 

%range contains the values of t for which the  

%autocorrelation has been calculated. 

The following plots are also obtained (with plot and stem). 

 
        Figure 19: ACF of filtered WGN 

 

The moving average filter acts as a low pass filter on the white Gaussian noise x. Averaging the shifted 

data before executing the correlation function produces a smoother signal. Because the samples are 

better correlated, the amplitude of the autocorrelation is higher for small delays and reaches zero for 

high delays.  This can be explained because the high frequency variations for large delays are filtered 

out before computation. In addition, as the order of the filter increases, the triangular waveform of the 

ACF is more wide and visible.  

 

2) The ACF of the filtered output is theoretically the convolution of the ACF of the input with the ACF 

of the impulse response.  For an uncorrelated process X, its ACF is a Dirac function centred at zero. 

Now, the convolution of a zero-centred delta with a signal gives the signal itself. So we have: 

𝑅𝑦(𝜏) = 𝑅ℎ(𝜏) 

The ACF of the impulse response of the moving average filter is a triangular waveform with base and 

amplitude equal to the order of the filter (as shown in figure 2 of figure 19, for order 9). 



2.3. Cross correlation function  

 

The cross correlation of two signals X and Y is theoretically: 

 

This can be estimated through the following time average:

 

1) The signal X is the white Gaussian noise and the signal y is the filtered noise (as in 2.2).  

The figure below shows the cross correlation of the two signals for delays between -1000 and 1000, 

and between -20 and 20 using stem.  

 
    Figure 20: Cross correlation of X and y, for delays between -1000 and 1000 
 

The cross correlation between the input and the output of a filter is given by,  

 

Therefore if X is uncorrelated 𝑅𝑋𝑌(𝜏) = ℎ.    

2) Executing the cross correlation of the uncorrelated (process) signal, such as WGN, with the 

unknown impulse response of the system allows to identify the transfer function of the system. This 

result can therefore enable system identification. 

 

 

 

 

 

 

 



2.3. Auto-regressive modelling 
 

The autoregressive model used is generated with the following equation: 

      

1) 𝑎1 and 𝑎2 are uniformly distributed random variables, where −2.5 ≤ 𝑎1 ≤ 2.5 and  −1.5 ≤ 𝑎2 ≤

1.5. The aim is to determine stable and unstable values of 𝑎1 and 𝑎2 for which the filter will converge. 

Through MatLab, 𝑎1 is plotted in function of 𝑎2 and the color of the plotted points gives an indication if 

the pair of values is stable or unstable. The figure 21 below shows the triangle of stability, in which 

red dots indicates possible stable combinations of 𝑎1 and 𝑎2 .  

 
   Figure 21: Region of convergence for AR   
 

According to the Yule-Walker equations,  

we have 𝜌1 = 𝑎1 + 𝑎2𝜌1 
     𝜌2 = 𝑎1𝜌1 + 𝑎2   where 𝜌1 and 𝜌2 are the correlation coefficients of order 1 and 2 and are   

     both in the range [-1,1]. 

The z-transform of the autoregressive model time equation gives the following condition: 

𝑧2 − 𝑎1𝑧 − 𝑎2  = 0 

For the filter to converge, the magnitude of z1 and z2 must be smaller than one.  

In that case, −𝑎2 = 𝑧1𝑧2 and the magnitude of 𝑎2is smaller than 1.  

 

We then have,  𝜌1 =
𝑎1

1−𝑎2
   hence  −1 <

𝑎1

1−𝑎2
< 1 → 𝑎2 − 𝑎1 < 1 &  𝑎1 + 𝑎2 < 1  .  

These two resulting equations combined with the restrictive ranges of 𝑎1 and 𝑎2 explains the 

triangular shape of the region of convergence. 

 



 

 

2) The ACF of the sunspot series is plotted for N=5, 20 and 250 in the figure below.  

  
     Figure 22: ACF of sunspot series for N=5, 20 and 250 

 

For N=5 samples, the repetitive patterns of the data can’t be determined as there is not enough 

samples. The 20 samples ACF shows clearly the repetition of the data every 13 years. For N=250, the 

excess of samples introduce new undesired peaks and the data repetition pattern disappears. This is 

due to the delay being larger than N/2, implying the ACF estimator to be inaccurate. 

When the ACF is computed for the data which undertook a mean subtraction, the peaks are no longer 

higher than 300. The global amplitude of the ACF decreases. Due to the DC, the data is more similar to 

its shifted versions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3) To find out the most probable order of the data, the Yuler Walker partial correlation coefficients are 

plotted on the same figure up to the 10th order.  
 

 
 Figure 23: Yule-Walker coefficients, for order up to 10 (11). 

 

This plot describes that the amplitude of the coefficients becomes smaller as the order increases. The 

order of 2 is also a threshold order for which the coefficients can be smaller. This second order is 

therefore the most likely order of a system.  

In order to compute the zero mean unit variance data, the mean is subtracted to the data, which is 

then divided by the variance. The following line executes this: x=(x-mean(x)) / std(x); 

 
 Figure 24: Yule-Walker coefficients, for order up to 10 (11) with zero mean, unit variance 

 

In this case, the coefficients for orders higher than 2 become even more smaller, and the peak at order 

2 increases. This confirms the result obtained with the original sunspot data. 



4) The alternative ways to determine the maximum order of the coefficients are the Aikake 

Information Criteria (AIC) and the Minimum Description Length (MLD) criteria, given by: 

 
 

Where 𝐸𝑝 is the loss function, p is the model order and N is the number of estimated samples.  The 

following figure 24 shows the error for each filter order, from 1 to 40. The order minimising the loss 

error is 8 for both MLD and AIC. On the other hand, it is important to note that the error has already 

been considerably reduced for order 2. A trade-off must be done between the accuracy and the 

computing complexity of the filter, hence making order 2 a generally best choice.   

 

 

 

 
 Figure 25: Estimated error by MLD and AIC, up to order 40 

 

 

 

 

 

 

 

 

 

 

 

 

 



5) An auto-regressive (AR) model is used to predict the sunspot data with some steps ahead. The 

figure 26 below shows the predicted data for prediction horizons 1,2, 5 and 10 and different model 

orders. 

 
    Figure 26: Predicted data over 40 years 

This plot shows that the model quickly converges to zero if the order of the filter is not high enough. 

This is the case for the ar1 and ar2 process. The ar10 model oscillates longer but is out of phase with 

the data. If the order is very high, the model will overestimate small fluctuations due to noise. In the 

end, it seems that the model of order 5 is a good trade-off between accuracy and long-lasting 

predictions. 

 

 

 

 

 

 

 

2.5. Real World Signal: ECG for iAmp experiment 

 

The heart rate can be obtained using the following formula. 

 
 

By averaging every 10 samples of the heart rate, a smoother estimate can be obtained.   

 

a) b) The probability density estimate has been plotted for alpha equal to 1 and 0.6.  Compared to the 

original, the averaged data is smoother. As we decrease alpha, the variation in the amplitude of the data 

becomes smaller. 

 



 
 Figure 27: Probability Density estimate (PDE) of averaged and non-averaged data 

 

 

 

c) The ACF of the data presents sharp peaks, so the transfer function must present double poles and 

cannot be a moving average filter. It must then be an autoregressive filter. 

 

    Figure 28: ACF for trials 1,2 and 3 

 

 

d) In this section, the coefficients Ar(p) of the autoregressive model characterising the ECG data are 

plotted. 



 

                            Figure 29: Yule Walker coefficients 

 

 

The optimal order is again the second one, as coefficients for higher orders are smaller than 0.5. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. Spectral estimation and modelling 

 
The power spectral density (PSD) of a signal X is given theoretically by: 

   

The periodogram is an estimate of the PSD based on the Fast Fourier transform (FFT) determined by: 

 

The function pgm takes as an input a signal x and outputs its periodogram Px. It is defined as follow. 

function Px=pgm(x) 

N=length(x); 

e=zeros(1,N); 

for n=0:N-1 

    e=exp(((-i*2*pi)*(n)).*(0:1:N-1)'./N)'; 

    Px(n+1)=(abs(sum(x.*e))).^2./N; 

end 

end 

 

The function pgm is tested with an N-sample realisation of WGN, where N=128,256 and 512. 

Theoretically, the PSD of the signal is the Fourier transform of the ACF. Now, as explained before, 

since the ACF of the WGN is a Dirac function with an amplitude determined by the variance, its PSD 

should therefore be uniform with an amplitude given also by the variance.  The figure below shows 

that the PSD becomes uniform as the number of samples increases, hence getting closer to the 

theoretical model.  

   
   Figure 30: Periodogram of WGN for N=128,256 and 512 



3.1. Averaged periodogram estimates 

 
 

1) The PSD estimate is now filtered by an moving average filter (FIR filter, low pass). The following 

code is used: 

 
px=pgm(x); %periodogram calculation 

px_smooth=filter(b,a,px); 

where we have: 
a=1; 

b=0.2*[1 1 1 1 1]; 

 

This gives the following periodograms for the different values of N previously used. This figure shows 

that the smoothness of the estimated PSD is improved.   
 

 

 
  Figure 31: Filtered periodogram of WGN for N=128,256 and 512 (smoothen) 

 

 

 

 

 

 

 

 

 

 

 



2) 3) The white Gaussian noise MatLab vector x of 1024 samples is now split in 8 non-overlapping 128 

samples segments. As this process is stationary, the statistical properties of each segment will be the 

same. The figure below shows the averaged periodogram obtained by computing the mean across the 

8 different split segments. For this averaged estimated PSD, the amplitude variation is smaller and it is 

centred at 1 as expected. 

 
 Figure 32: Average periodogram of WGN for N=1024 (split in 128 samples segments) 

  

 

 

3.2. Spectrum of autoregressive process 

 
 

The theoretical PSD of an autoregressive process Ar(p) with input X and output Y is: 

 

The autoregressive process used is of order one and has 𝑎1 = 0.9. 

The input signal considered is a white Gaussian noise (WGN) vector x of 1064 samples. The figure below  shows 

the time sequences of the input x (WGN) and of the output y which is a filtered version of x. This plot confirms 

that the filter acts as a high pass filter on the input as it removes most of the variations and spikes. 

 



 
 Figure 33: Average periodogram of WGN for N=1024 (split in 128 samples segments) 

 

1)2) To plot the theoretical PSD of y, the filter transfer function h is determined with the function freqz. 

 
 Figure 34: Filtered PSD and periodogram of filtered sequency y 



The cut-off frequency of the system is at 0.44 Hz normalized. For smaller frequencies, the power 

distribution equals to zero, hence proving the filter’s high pass abilities. The periodogram is calculated 

with the function pgm and is shown in red on the same plot in Figure 34. Even if the periodogram 

filters out low frequencies, peaks are observed at low and high frequencies. This is because the 

periodogram is an estimate considering only a finite number of samples. 

3) The figure 35 below shows the zooming in the region for f in the range [0.4,0.5]. Large peaks 

between 0.48 and 0.5 are observable. This is mostly due to the effects of windowing. In deeper details, 

when a finite number of samples of WGN is processed, this one is multiplied by a rectangular window. 

In the frequency domain, this is a convolution between the data and a sinc function, hence introducing 

peaks in a wider transition band. 

 

 
   Figure 35: Zoom of figure 34 for f in the range [0.4, 0.5] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Model Based PSD (MBPSD) 

 

The MBPSD is an estimate based on the estimations of the parameters 𝑎1and σx2 of the autoregressive 

process (ARP).  These are calculated according to the estimated ACF of the filter output y with:    

 

 

 

 

4) The model based estimate is determined by the equation: 

   

 The following figure shows the MBPSD. The parameters previously discussed have been determined 

in the MatLab script using the xcorr command. The MBPSD was found by squaring the amplitude of 

the transfer function of the AR filter which is returned by the function freqz. 

 

 
  Figure 36: Model-based PSD estimate and periodogram 

 

The MBPSD gives clearer results than the periodogram. It is smooth and its shape corresponds to the 

theoretical PSD. On the other hand, its amplitude is very small relatively to the periodogram. Indeed, 

the amplitude of the MBPSD is dependent on the variance, which can vary a lot, depending on the data. 

We can also deduce that an increase in the size of the data will increase the magnitude of the PSD.    



5) We now set the sunspot series data as the input to the filter. This data is an AR(2) process. The 

figure 37 below shows the periodograms and the MBPSDs for the original and the centred data.  

 
  Figure 37: Model-based PSD estimates and periodograms for sunspot data 

 

If the data is centred at zero, the amplitude of the PSD increases. The variance increases when the 

mean goes to zero, and hence increases the MBPSD. In more details, because   σx2 =E(x2)-E(x)2, if  

E(x)2 =0, the variance will increase. The periodogram of the original data shows a huge peak of 7x105 

around DC. When the mean is set to zero, the peak disappears from the periodogram but remains in 

the MBPSD. This is because the periodogram is highly connected to the sample data whilst the MBPSD 

is more distant reflection of the real data.  

 

The MBPSD is computed for order 1, 2 and 10.  The estimate for order 10 is not the theoretical model 

at all. This is due to over-modelling, which basically means that the filter is ‘ultra-sensitive’ and 

exaggerates small fluctuations due to noise, as described before.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.3 Spectrogram for time-frequency analysis: dial tone pad. 

In a dual tone multi-frequency (DTMF) system, each keypad is associated to two frequencies f1 and f2 

which determines the frequency of the keypad tone. 

 

The values for f1 and f2 are attributed according to the following table: 

 

1) A MatLab script has been coded to generate a random London landline number (020XXXXXXXXX), 

which is then stored in the signal x (vector). The assumption is that a digit is pressed during 0.25 

second and is released (idle) for 0.25 second as well. The program produces a sample of y at the 

sampling frequency of 32168 Hz. This value is appropriate as it is higher than twice the maximum 

value that f1 or f2 can take (1477 Hz). The following figure 38 shows the signal y for 2 random digits. 

 

 
  Figure 38: Signal y for 2 random digits (2 and 4 here) 
 

 

 
 

 



2) The function spectrogram is used to analyse the spectral component of y. A Hanning window with a 

length of 0.25 second is chosen (8192 samples). This will prevent the windows from overlapping, 

since y is discontinuous.  

 

 
 Figure 39: Spectrogram of digit 2 
 

 
 Figure 40: FFT of digit 2 
 

 

 

 

3) If the plots on figure 38 (red and blue) were separate, it would be easy to recognizes/learn which 

sequence corresponds to which keypad. Moreover, several tons can be represented on the 

spectrogram, so each would be easily identified.  



4) The previous experiments are now repeated with white Gaussian noise added to the keypad tone, 

hence corrupting the signal. The following expression can be used here: 
                          𝑦[𝑛] = sin(2𝜋𝑓1𝑛 ) + sin (2𝜋𝑓2𝑛) + 𝑤(𝑛)  

The variance of the noise will vary between 0.1 and 2, by multiplying the generated WGN vector by 

the constant variance. The following figures illustrate the results. 

  
 Figure 41: Keypad sequence (y) corrupted with WGN with different variances 

 

 
 Figure 42: FFT of Keypad sequence (y) corrupted with WGN with different variances 

 

For a variance of 0.1, it is still possible to identify the two keys and the silent tone. As the variance 

increases, it becomes impossible to detect the silence tone.  
 

 

 



4. Optimal Filtering – Fixed and adaptive 

 

In this section, the process of adaptive filtering is introduced. The paramaters of the filters are triggered in 

function of the error e.   

 

The optimum Wiener filter solution for the coefficient w is determined by minimizing the average squared error e[n], 

4.1 Wiener Filter 

 

1) The coefficients for the wiener filter are determined using by calculating the autocorrelation Rxx and cross 

correlation pzx between z and x. The following values are found for the coefficients wopt, 1.0844,   1.9760, 2.9463,   

2.0304 and 0.9945. These are similar to the ones of the unknown system. 

2) We repeat the experiment by varying the value of the variance, we obtain the following results: 

Variance   SNR dB W1 W2 W3 W4 W5 

0.5 20 1.0334 1.9900 2.9943 2.0030 0.9923 

1.1 18 1.0322 1.9960 2.9925 2.0010 1.0032 

1 17 1.0844 1.9900 2.9463 2.0304 0.9945 

2.3 12 1.0822 1.9809 2.9233 2.0505 0.9098 

5 5 1.0913 1.9800 2.9024 1.9705 0.90086 

10 -5 1.0944 1.9760 2.9031 1.9605 1.0345 

 

As the noise increase, the value of the coefficients fluctuate from the real coefficients. 

3) The multiplication and additions due to the correlation functions of the routine have complexity O(n2). 

 

 

 

 

 

 

 

 



4.2 Least Mean Square algorithm 

 Figure 43: Evolution of the coefficients with mu= 0.03, 0.0125, 0.125 and 0.5 

 

If mu is too small then the convergence towards the final value will be slow. Increasing the value of mu beyond 0.2 

will accelerate but destabilize the response. 

 


