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Abstract 

 
This project concerns the research and development of a real-use application of homomorphic 

encryption for cloud computing. The application takes advantage of the various possibilities 

and limitations of present homomorphic encryption schemes and programming libraries to 

remain usable in terms of time. The foundations of the application rely on the design of binary 

operations using homomorphic encryption. All the binary logic gates and various binary blocks 

were developed and adapted to provide enough functionalities to the application. The project 

focuses on providing features to cloud computing such as calculating averages on large 

amounts of encrypted numbers in a relatively short and decent time. The result is an application 

program interface written in C++ allowing to perform various operations on integers. It thus 

shows homomorphic encryption can be used today for simple operations if the security is more 

important than the speed of execution.  
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Chapter 1 
 
Introduction 
 

 

 

Powerful, scalable, cheap and easily accessible, cloud computing is becoming increasingly 

popular to manage data. Companies and individuals tend more and more to outsource their data 

and its management to cloud computing. This type of remote computing is quite recent and 

really took off in 2006 with the introduction of the Elastic Cloud Computing by Amazon. 

 

There is however a strong security and privacy flaw in the cloud computing concept. Whereas 

in cloud storage, a client can encrypt its data before uploading it to the remove server, or 

“cloud”, and will only need to decrypt it once he or she needs it, this is not the case for cloud 

computing. Indeed, as its name indicates, cloud computing performs some operations on the 

data. The security protocol today is thus the following: the client encrypts the data, sends it to 

the cloud computers which then decrypt it in order to process the data received. The result is 

then encrypted and sent back to the client which in turn can decrypt this one. The 

communication channel is thus secured, but the cloud computers have access to all of the 

client’s data, query and corresponding result. If the data is sensitive, this raises many security 

and privacy concerns.  

 

There is not a concrete solution yet, but there exists a technology in a booming evolution which 

can address satisfactorily these concerns. It is called fully homomorphic encryption (FHE), and 

conceptually consists in allowing to perform arbitrary computations on encrypted data, also 

called ciphertext(s), to produce an encrypted result which, once decrypted, matches the result 

of the operations performed on the original data, also called plaintext(s). This technology 

became a reality in September 2009 when Craig Gentry, a doctoral student at Stanford 

University, released a dissertation on the first realisable FHE scheme (Reference 1). 

 

Any computation can be expressed as a combination of logic gates, which can be derived from 

the addition (XOR) and multiplication operations (AND). As these two operations are 

supported by the FHE scheme, theoretically any function could be performed on encrypted 

data. This would revolutionize cloud computing and solve all the privacy and security concerns 

previously described. The cloud computer using FHE would not access the plaintext data at all, 

and only the client would be able to decrypt it. 

 

But the reality is sadly different. Even with the many advances and new FHE schemes, the 

processing time needed by the latest FHE implementations is still millions of times greater than 

the time required for usual plaintext processing. This limitation often categorises FHE as a non-

realistic method, which should not be used until it becomes much faster.  

 

One of the aim of this project is to show present FHE implementations can already be used for 

some cloud computing scenarios. Another aspect is to expose the limits of FHE calculations. 

In order to do so, various operations such as the Euclidean division or the multiplication were 
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implemented in binary homomorphically, to concretely test possibilities and limitations of 

current FHE. Overall, this depicts what can be done homomorphically in a cloud computing 

context today.  

 

The report is structured as follows. The next section is the background of the project, covering 

the working of FHE, the relevant external work and the choices made for this project. The 

chapter 3 summarises the aim of this project and its deliverables. The next chapter contains the 

design aspect of the project whilst the chapter 5 explains the implementation of the designs. 

The chapter 6 highlights the testing methods used as well as how the implementation was 

functionally verified. Results and their analysis obtained from testing the program implemented 

are shown in chapter 7. The comparison between what has been achieved and what was aimed 

to be done will then be carried out with explanations in the evaluation chapter. The chapter 9 

covers further work which can be carried out from the final state of this project, and is followed 

by the conclusion chapter. Finally, the chapter 11 is a user guide for setting up and using the 

program developed. 
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Chapter 2 
 
Background 
 

 

 

In order to develop the application for this project, several software libraries implementing the 

latest schemes of FHE were found. These actually serve as a proof of practical use of their 

respective scheme. Indeed, some schemes such as Gentry’s original FHE scheme (reference 1) 

could never be implemented due to its space complexity. First of all, we will start with a quick 

explanation of this initial FHE scheme designed by Craig Gentry in 2009, to better understand 

the more recent optimisations. The main advances made in the field will then be highlighted. 

The libraries found will be discussed regarding their advantages and drawbacks. 

 

 

2.1 Craig Gentry’s initial FHE scheme 
 
Craig Gentry started with a somewhat homomorphic encryption, abbreviated by SwHE, in 

which ciphertexts have some “noise”, which comes from randomness added for security 

purposes. The noise of a ciphertext grows with each additional operation performed on this 

one. The ciphertext can’t be decrypted anymore once the noise grows above a certain threshold. 

To make of his SwHE scheme a FHE scheme, Gentry developed a technique called 

bootstrapping which decrypts and recrypts the ciphertext at each operation to reduce its 

associated noise. This allows an infinite amount of operations to be performed on ciphertexts. 

However, each bootstrapping is slow so performing an addition or multiplication will always 

be slow. Since then, many improvements have been made to make a more efficient, usable 

FHE scheme.  
 
 

2.2 FHE new schemes and improvements 
 
Apart from several small enhancements such as a reduction of the size of the FHE keys, there 

are today three main improvements since Gentry’s first FHE scheme (reference 1). The first 

one is the support of SIMD operations (reference 2). Abbreviation of Single Instruction 

Multiple Data, SIMD is usually implemented in hardware chips to process several vectors of 

multiple elements with a common instruction component-wisely. The following figure 

illustrates its working. 
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Figure 2.2.a: SIMD operation of multiplication on vectors v1 and v2 

 

 

 In the FHE case, the SIMD operations are actually performed on the ciphertexts in the 

plaintext space. Before being encrypted, a plaintext is not a single value but a vector of plaintext 

elements. The encrypted vector then results in a “packed” ciphertext. The SIMD operations are 

executed as shown in the example figure below. 

 

 

 
 

Figure 2.2.b: SIMD operation of multiplication on two ciphertexts with FHE 

 

 
This improvement allows to perform an operation on multiple entries at once and thus reduces 

either the time cost associated with bootstrapping or the number of levels needed in the case of 

a leveled FHE (see part 4.5). 

 

The next enhancement is tightly related to the introduction of SIMD operations support for 

FHE. SIMD for FHE initially only supported the addition and multiplication operations. The 

limitation was that if one needs to perform an operation with the element of one plaintext vector 

at the position 2 and the element of another plaintext vector at the position 3, the ciphertexts 

had to be unpacked and then repacked, taking a significant amount of time. The solution 

brought was a permutation network allowing to permute elements without needing to unpack 

and repack everything (reference 3). Not only this provides great flexibility and efficiency, but 

also make the FHE SIMD very usable. 

 

 The modulus switching was introduced with the BGV scheme (reference 4), aiming to 

provide an alternative to the slow bootstrapping. The modulus switching is the key element 

behind a new FHE scheme called the BGV scheme, or RLWE (Ring learning with error) 

scheme, or also leveled FHE. Whilst bootstrapping allows to perform an infinite number of 

operations on a ciphertext, the leveled FHE sets an arbitrary limit to the number of operations 

which can be performed on a ciphertext. This may first appear as a drawback, but is actually a 
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lot faster than bootstrapping in some cases. In this scheme, there is a predefined number of 

levels which is proportional to the maximum number of operations to be performed on the 

ciphertext. This one is actually proportional to the accumulated noise added with each 

operation. Note that addition adds very little noise whilst multiplication adds significant noise 

to the ciphertext. Therefore, the number of multiplication operations to be performed on a 

ciphertext should determine the number of levels. Note that for a high number of levels, 

bootstrapping becomes faster than the BGV scheme.  

 

 All these improvements added to the various speed and space enhancements made 

during the last six years gave birth to more usable FHE schemes. Many of them are 

implemented in open-source libraries and software packages and hence available for further 

development. 

 

 
2.3 FHE software libraries 
 

The most complete, portable and well maintained library is called HElib (reference 5). It is 

written in C and C++ and implements a FHE scheme including both the BGV scheme with 

modulus switching (reference 4) and bootstrapping, SIMD operations (reference 2) and the 

permutation network optimisation (reference 3). It also supports several other speed 

enhancements such as multi-threading and propose an easy access to tweaking the many 

optimisations. It is also well documented (references 6, 7) and is maintained by Victor Shoup 

(NYU, creator of NTL library), Shai Halevi (IBM Watson research centre, and one of the 

pioneers of FHE) and several other participants on GitHub. HElib requires the NTL 

mathematical library (reference 8) as well as the GMP library (GNU Multiple Precision 

Arithmetic)(reference 9).  

 

As the HElib library is quite low-level, the PhD student Grant Frame released in June 2015 an 

open-source Integrated Development Environment (IDE) for HElib called HEIDE (reference 

10). It uses Python for its interface layer and links it to a compiled wrapper written in C++ for 

the main HElib functions. On one hand, the described C++ wrapper served as a starting point 

to the application programming interface developed in the project. On the other hand, this 

wrapper was quite limited and was not fitting the purpose of the project. The python program 

using it was thus not used at all in this project. 

 

Another software package “An R package for fully homomorphic encryption”, released by 

Louis Aslett (Oxford) in 2015 (reference 11), implements the Fan and Vercauteren scheme 

(reference 12). It can thus perform the addition and multiplication operations, as does HElib, 

but not the subtraction. Its source code is high performance C and C++ tailored to multi-core 

multi-threading computations, making it quite attractive. It also supports SIMD operations. 

However, this library was not chosen because I had no experience in R language and the 

downloadable source code was too complex to understand. HElib complemented with the C++ 

wrapper of HEIDE was thus preferred over this library. 

 

Wei Dai from the Vernam Group at the Worcester Polytechnic Institute developed and released 

in January 2016 an open-source FHE library called cuHE (reference 13). It implements the 

Doroz-Hu-Sunar (DHS) SwHE scheme (reference 14) based on the Lopez-Tromer- 

Vaikuntanathan (LTV) scheme (reference 15). The main difference with the previous 

implementations is that it uses Nvidia CUDA-enabled graphic processing units (GPU) to 
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parallelise and accelerate the homomorphic operations even further. It is 10 to 100 times faster 

than the other implementations, hence widening the range of applications for FHE. It requires 

the NTL library and the OpenMP API to run. However, this library is not very portable as it 

requires an Nvidia GPU. As some of the project’s work was already carried using HElib, cuHE 

was not used. It however remains a very interesting implementation for further work. 

 

  There is another open-source library, krypto (reference 16), released in November 2015 

by the company kryptnostic. It is actively developed and might incorporate an interesting FHE 

scheme. However, no research paper or documentation was found, making it undesirable. 

  

  Leo Ducas and Daniele Micciancio released the open-source FHEW library in January 

2015 (reference 17) which achieves a 1-bit NAND gate homomorphic operation in less than a 

second with bootstrapping. However, this library is very narrowly focused on performing a fast 

NAND gate operation only. It does not provide many settings or options and is thus not suitable 

for the project. 

 

  The last library found was released by Jean-Sebastien Coron in 2012 and implements 

the DGHV FHE scheme in Python with the SAGE mathematical library (reference 18). 

However, it has not been modified since then and does not incorporate the latest enhancements 

such as the ones present in HElib. It was therefore not appropriate for the project. 

 

  The following table summarises the libraries with some of their characteristics such as 

the programming language they use.  

 

 
 

Figure 2.3.a: Summary table of FHE software libraries of interest 

 

In figure 2.3.a, each library is assigned a score ranging from 0 to 5 on different criteria such as 

performance. The overall score column represents the cumulative score for each library. HElib 

was thus chosen as the base of the project because of its highest score. Moreover, HEIDE was 

also used as a starting point to the application programming interface (API) developed. cuHE 

is also a really great library and should be explored in future works. 

 

 

 

 

 

 

 

 

 

 

 

 

http://openmp.org/wp/
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Chapter 3 
 
Requirements capture 
 

 

The project should show homomorphic encryption can be used for simple operations today. It 

should provide simple but useful operations for cloud computing willing to use FHE, such as 

the average operation. The average is relatively simple and only requires a sequence of 

additions and a division. The project will also focus on showing the possibilities and limitations 

of current FHE, especially through testing, measurements and plots. This should hence 

determine what feature can be used in a decent time with current technology. 

 

 

Theoretically, averaging numbers is simple. For homomorphic applications, it is not at all. First 

of all, the basic operations provided by HElib are very limited as it will be shown in chapter 4. 

All the traditional logic gates and binary circuits necessary to reach the addition and the 

division operations will have to be developed and adapted to the homomorphic encryption 

scheme.  

 

This project should also provide a good starting point for many horizons for future work, 

regarding the addition of features, the increase in performance, and a better ease of use. 
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Chapter 4 
 
Analysis and Design 
 

 

4.1 The limits of the software library HElib  
 

The software library HElib, as all the other homomorphic encryption libraries, provide the 

addition and multiplication operations on ciphertexts in the plaintext space. The homomorphic 

subtraction and negation operations are also supported by HElib. However, all these operations 

are done in a field 𝐹𝑝𝑑 where 𝑝 is a prime number, and their results are modulo 𝑝. 

Homomorphic additions and multiplications are only meaningful if the result satisfies 𝑟 < 𝑝, 

condition which can’t be checked homomorphically. The subtraction and negation operations 

are meaningless as their result is also modulo 𝑝, which is undefined. Furthermore, all these 

homomorphic operations are pointless if used in their raw form. In addition to these limits, 

numbers can’t be compared, conditions statements can’t exist, and more complex operations 

such as division can’t be achieved.  

 

 

4.2 Unlocking the potential of HElib 

 

The solution to unlock the potential from these operations was to implement binary logic 

compatible with FHE from the ground up. In order to do so, 𝑝 is set to 𝑝 = 2, and 𝑑 = 0, hence 

allowing values to be either 0 or 1. In the binary context, subtraction is equivalent do addition, 

and negation does not change the binary value, as shown in the binary equations below. 

 

{
0 + 0 = 0 − 0 = 1 + 1 = 1 − 1 = 0
1 + 0 = 1 − 0 = 0 + 1 = 0 − 1 = 1

−0 = 0      𝑎𝑛𝑑   − 1 = 1
 

 

 

Furthermore, only the addition and multiplication homomorphic operations are useful in 

binary.  

 

Now, the addition operation and the multiplication operation actually implement a XOR 

(exclusive OR) and an AND logic gate, as shown in the equations and truth tables below. 

 

 Addition   XOR truth table 

 

0 + 0 = 0  

0 + 1 = 1  
1 + 0 = 1  
1 + 1 = 0  
 

 

 Multiplication   AND truth table 
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0 × 0 = 0  

0 × 1 = 0  
1 × 0 = 0  
1 × 1 = 1  

 

 

This makes a good starting point, but other logic gates such as the OR gate are required. To be 

able to derive all the other logic gates, the NOT logic gate is also needed. The NOT logic gates 

takes a binary input and switches it. In order to implement it, the only solution is to add the 

input to a constant 1, so that a 0 becomes a 1 and 1 becomes a 0.  

 

 Addition with constant 1 NOT truth table 

 

0 + 1 = 1  

1 + 1 = 0  
 

 

This raises some security concerns as it means the user will have to provide a ciphertext of 

reference for 1. However, the risk is mitigated thanks to the SIMD support of HElib as 

explained later. 

 

From these three logic gates, all other logic gates can be derived: NAND, OR, NOR and XNOR 

gates. 

 

 
4.3 Level parameter and complexity 

 

The next stage is to develop larger binary blocks from these logic gates. However, it is 

important to highlight the main limitation of FHE now. As explained in Chapter 2, the 

homomorphic multiplication operation adds a significant amount of noise to the ciphertext in 

comparison with the homomorphic addition operation. Indirectly, the number of homomorphic 

multiplications is thus proportional to the time complexity of a homomorphic function, and is 

thus called complexity in the following. 

 

To prevent the noise from growing too big, HElib proposes a levelled homomorphic 

encryption, which is more flexible and usually faster than the classic FHE scheme with 

bootstrapping. It consists in setting a level parameter 𝐿 at the key generation stage. This 

parameter is proportional to the maximum number of homomorphic operations to be performed 

on a ciphertext. Also, the lower 𝐿 is, the faster the homomorphic operations will be. This thus 

gives a great compromise between short and quick operations, and long and slow operations.  

 

To highlight the relationship between the level parameter, the number of multiplications 

(complexity) and the time needed for a function to execute, the following graph was plotted 

from real time measurements. 
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Figure 4.3.a: Execution time plotted against the complexity and the level L 

 

The graph shows that the complexity is usually a good indicator to determine the minimum 

level required. This also shows that the time required for a homomorphic function to complete 

is almost linearly proportional to its complexity. 

 

 

4.4 Logic gates and complexity 

 

The complexity and its relationship with the level parameter previously described implies that 

some logic gates using multiplications should be avoided as much as possible. The following 

table describes the number of homomorphic multiplications needed for each of the logic gates. 

 

 

 
 

Figure 4.4.a: Homomorphic logic gates and associated required multiplications 

 

 

 

XOR, NOT and XNOR gates only uses the addition operation and do not affect significantly 

the noise of the ciphertext. Hence they do not require a higher level L usually. The other gates 

however all require 1 homomorphic multiplication and add a lot of noise to the ciphertext; these 

should thus be carefully used. 

 

An important design was for the OR gate, which was originally implemented with 3 NAND 

gates so requiring a complexity of 3. It was first found that a NOR gate could be implemented 

with the following circuit. 
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Figure 4.4.b: Digital circuit design for the NOR gate 

 

This only requires 2 NOT gates and 1 AND gate, resulting in only 1 homomorphic 

multiplication. The OR gate can then be designed from this circuit by adding a NOT gate to 

the output of this NOR gate, resulting in a much more efficient homomorphic logic gate with 

a complexity of 1 only. 

 

 

 

4.5 SIMD operations 

 

As described previously, HElib supports SIMD operations, where several values can be packed 

into a single ciphertext, and these can undergo a common instruction with another packed 

ciphertext. This has several advantages: 

 No waste of space in the ciphertexts 

 Ciphertexts are shorter 

 More data can be processed homomorphically and in parallel 

 

This enhancement is optional in HElib but was decided to be used to make full profits of 

expensive homomorphic operations. 

 

The SIMD mode of operation requires 𝑁 integer values -0 or 1 here- to be encrypted and packed 

into a ciphertext, where the minimum value of the number of plaintext slots 𝑁 depends on the 

level parameter 𝐿 and the security parameter 𝑘. This is due to the fact that ciphertexts grow 

larger as the level parameter or the security parameter increases. A lower bound 𝑠 for 𝑁 can 

also be set at the generation of the key pairs. Setting 𝑠 higher than the minimum value of 𝑁 is 

useful only if the time per operation is more important than the overall time. Indeed, for 

example, performing an OR gate on 100 slots ciphertexts would take 10 units of time, whilst 

performing it on 200 slots would take 17 units of time, a faster approach per operation. This 

will be investigated more deeply in part 7.3. 

 

The packed ciphertexts are used such that each slot is independent from the other ones. The 

following diagram illustrates how an AND operation is performed with SIMD.  
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Figure 4.5.a: Conceptual working of homomorphic OR gate using SIMD 

 

 

For instance, this independence was maintained in all the operations developed. The first 

“row”, or first plaintext slot, of a ciphertext will be part of an operation with other first rows of 

ciphertexts and will never interact with other rows.  

 

 

4.6 Designing homomorphic combinational circuits 
 
The next stage was to use the logic gates to build combinational circuits taking up to 3 bits as 

input and producing up to 2 bits of output. This followed the same SIMD method as before, 

where the M inputs are actually represented by M ciphertexts containing 𝑁 independent bits. 

The output ciphertexts (or 𝑁 independent output bits) replace some or all of the M input 

ciphertexts. 

 

The circuits hence designed are listed in the table below, together with their respective 

complexity, inputs and outputs. 
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Figure 4.6.a: Descriptive table of the combinational circuits designed 

 

 

All these combinational circuits were designed to be used at a higher level for 𝑛 bits numbers 

instead of single bits. They allow to add, subtract and compare 𝑛 bits numbers if configured 

together properly. The multiplexer 2:1 is also a key element for the division as it actually allows 

to do an if-else statement.  

 

As shown in the table, the full comparator has the highest complexity of 4 and should be used 

minimally. This is because it uses the Lower Than comparator, the full equality comparator, 

and logic gates, aggregating to 4 homomorphic multiplications. Note that a Lower Than 

comparator was designed instead of a Greater Than comparator because this one requires a 

non-necessary complexity of 4, instead of 1. 

 

The full adder and full subtractor are essentially the same except they operate in reverse. This 

is why they have the same complexity of 3, as they both use two of their respective half 

combinational circuit with an OR gate.  

 

The multiplexer requires a complexity of 3 as it uses 3 NAND gates, and the full equality 

comparator is quite cheap in terms of complexity because it only uses an AND gate on top of 

a XOR gate.  

 

 

4.7 Designing homomorphic sequential circuits 
 
Once all the necessary combinational blocks are designed, sequential circuits can be developed. 

The objective now is to be able to process variable sized binary numbers, such as adding a 4 

bit number with a 3 bit number.  

 

For the homomorphic sequential circuits, the clock is replaced by plain software code (C++) 

which calls a homomorphic combinational circuit in a for loop for example. To represent an 𝑛 

bit number, 𝑛 ciphertexts are needed. The following diagram shows the plaintext representation 

of N numbers of n bits. 
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Figure 4.7.a: Representation of n bits numbers packed in ciphertexts 

 

 

Each of the designed sequential homomorphic circuits hence takes 𝑛 ciphertexts for each 

number (or more precisely 𝑁 numbers packed). 

 

The following table highlights the sequential circuits developed with their complexity and 

purpose. Here again, n represents the number of bits of a binary number, as shown on figure 

4.7.a. 

 

 

 
 

Figure 4.7.b: Table of sequential homomorphic circuits designed 

 

 

 

As before, the ripple carry adder and ripple borrow subtractor act similarly. They both use their 

respective half combinational circuit, with a complexity of 1, followed by 𝑛 iterations using 

their respective full combinational circuit, requiring each time a complexity of 3. They hence 

require a complexity of 3𝑛 + 1.  
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Note also that the ripple carry adder and the ripple borrow subtractor add one extra most 

significant bit to the resulting binary number, respectively to store the eventual overflow bit 

and to store the sign bit.  
 

Floating numbers support was not designed due to the already quite high time needed for these 

sequential circuits to complete for numbers of 8 bits for example. 

 

Similarly, the ripple comparator uses the half comparator once and then the full comparator for 

the remaining 𝑛 − 1 bits, hence requiring a complexity of 1 + 4(𝑛 − 1). This is the highest 

complexity and this circuit should thus be avoided as much as possible. 

 

The multiplexer N:1 consists in a single select line (1 bit) determining if the n bits number A 

or the other number, B, should be outputted. It is based on a simple iterative loop using the 

combinational multiplexer 2:1 previously described for each bit of A and B. Its complexity is 

thus the number of bits –or the number of iterations- times the complexity of the 2:1 

multiplexer, hence 3𝑛. 

 

 

The ripple equality tester uses the half equality comparator once and then the full equality 

comparator combinational circuit in an iterative loop, similarly to the other ripple sequential 

circuits. Its complexity is only 𝑛 − 1 because the full combinational circuit requires 1 

multiplication and is operated 𝑛 − 1 times. 

 

Finally, the right and left shifter only switch around, copy and erase ciphertexts. As shown in 

figure 4.7.a, it is clear that shifts can be easily done without any homomorphic operations at 

all. These are thus some complexity free operations. 

 

It is important to note all the sequential circuits were designed with the aim to use them for 

various size of binary numbers, for flexibility and testing purposes. The following figure plots 

and summaries the complexity of all the sequential circuits designed as a function of the 

number of bits 𝑛 of the input number(s). 

 

 

 
 

Figure 4.7.c: Complexity vs Number of bits, for all sequential circuits designed 
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The figure 4.7.c is useful to have a quick idea of the complexity of a certain circuit for a specific 

number of bits. This also helps to determine a reasonable value for the level parameter 𝐿. Note 

also the ripple carry adder, ripple borrow subtractor and 2:1 multiplexer circuits are actually 

worse than the ripple comparator in terms of complexity for 𝑛 < 4. 

 

 

4.8 Determining the level parameter 
 

Homomorphic sequential circuits have a complexity varying with the number of bits of the 

input number(s). Even if the level parameter grows with the complexity, it is not totally 

proportional. Various other factors such as the number of plaintext slots can highly influence 

the minimum level parameter.  

 

For instance, the only solution to determine the minimum level parameter was the trial and 

error method. For each sequential circuits and for each number of bits ranging from 1 to 𝑛 =
16, the minimum level parameter yielding correct results was recorded. An online linear 

regression calculator from graphpad software (reference) was used with the data recorded for 

each sequential circuit. This provided a best fit function yielding a level parameter for a given 

number of bits. These various functions can then be combined to give a specific function for a 

more complex homomorphic circuit using various sequential circuits, for different number of 

bits. However, the trial and error method always yields slightly better results and should thus 

be used for a particular case. 

 

 

4.9 Designing the binary multiplication operation 
 

The homomorphic binary multiplication circuit takes 𝑛 ciphertexts per number, so a total of 

2 × 𝑛 ciphertexts for two 𝑛 bits numbers. It uses a rather simple algorithm called the shift and 

add or long multiplication. An example of it is shown in the figure below. 

 

 

 
 

Figure 4.8.a:  Example of the long multiplication algorithm 

 

It consists in a combination of left binary shifts and bitwise AND between the two numbers, 

followed by a final addition using the ripple carry adder previously designed. The algorithm 
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was slightly modified to have the lowest homomorphic complexity, as shown in the pseudo 

code below. 

 

 
Figure 4.8.b:  Long multiplication algorithm adapted pseudo-code 

   

 

In this pseudo code, all the memory operations such as appending bits or setting a binary 

number to another binary number are not done homomorphically and thus have a complexity 

of 0. The overall complexity of the multiplication is only due to the ripple carry adder and to 

the AND logic gate used once on each ciphertext. The complexity can thus be calculated as 

follows: 

 
𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑜𝑓 𝐴𝑁𝐷 𝑔𝑎𝑡𝑒 + 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑜𝑓 𝑅𝑖𝑝𝑝𝑙𝑒 𝑐𝑎𝑟𝑟𝑦 𝑎𝑑𝑑𝑒𝑟  

                      = 1 + 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑜𝑓 𝑅𝑖𝑝𝑝𝑙𝑒 𝑐𝑎𝑟𝑟𝑦 𝑎𝑑𝑑𝑒𝑟 

 

Now the complexity of the ripple carry adder is 3𝑛 + 1, but here, because the ripple carry adder 

extends the size 𝑛 in bits of the accumulator at each iteration, from 𝑛 + 1 to 2𝑛 − 1, the 

iterative complexity is  (3(𝑛 + 1) + 1) + (3(𝑛 + 2) + 1) + ⋯ + (3(2𝑛 − 1) + 1). 

 

This is a sum of an arithmetic progression which can be expressed as 

 
𝑛−1

2
((3(𝑛 + 1) + 1) + (3(2𝑛 − 1) + 1)) =  4.5𝑛2 − 3.5𝑛 − 1 

 

The overall binary multiplication complexity is thus 4.5𝑛2 − 3.5𝑛, where n is the number of 

bits of the binary numbers. 
 

  

In terms of time, this design requires 5. 5𝑛2 − 3.5𝑛 − 1 multiplications as 𝑛2 multiplications 

have to be performed for the AND gate operations. The following figure shows the 

homomorphic complexity and the total number of multiplications required varying as functions 

of the number of bits 𝑛 of the binary numbers. 
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Figure 4.7.c: Complexity and total number of homomorphic multiplications performed vs 

number of bits n, for the multiplication circuit 

 

 

 

4.10 Designing the Euclidean division 
 

The homomorphic binary Euclidean division circuit is the most complex circuit. As for the 

multiplication, it takes 𝑛 ciphertexts per number, so a total of 2 × 𝑛 ciphertexts for two 𝑛 bits 

numbers. It is based on an enhanced version of the restoring division algorithm (reference 20). 

The following pseudo code explains its operation. 

 

 

 
Figure 4.8.b:  Long multiplication algorithm adapted pseudo-code 
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For a more concrete explanation, the following figure explains the steps needed to divide 5 by 

3 using this algorithm. It also highlights the homomorphically complex parts and the memory 

and shift operations. 

 

 
 

Figure 4.10.a: Step-by-step example of the division algorithm used 

 

 

The red squares are performed with the ripple borrow subtractor, hence with a complexity of 

1 + 3𝑛 multiplications. The orange squares represent the conditional replacements of the upper 

half of X by R, which is done with the n:1 sequential multiplexer, requiring 3𝑛 homomorphic 

multiplications. These two operations are actually the only ones affecting the level parameter. 

The overall complexity of this circuit is thus 𝑛(1 + 3𝑛 + 3𝑛) = 6𝑛2 + 𝑛 homomorphic 

multiplications. 

 

The remaining of the operations are memory operations such as binary shifts, copying and 

erasing ciphertexts and do not affect the performance of the homomorphic computations. The 

advantage of this circuit is that it accepts binary numbers of any length 𝑛, which is great for 

testing purposes. 

 

The following figure plots the complexity of the multiplication operation together with the one 

of the Euclidean division operation for different values of 𝑛. 
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Figure 4.10.b: Complexities of the multiplication and Euclidean division operations, as a 

function of the number of bits n 

 

 

 

In a microprocessor, the Euclidean division requires many extra clock cycles in comparison 

with the multiplication. The situation is similar here, the Euclidean division is much more 

demanding in term of homomorphic multiplications than the multiplication circuit. The larger 

the number of bits, the larger the complexity will be and the slower the operation will be 

unfortunately. 
 
 

4.11 Designing the average operation 
 

The average operation is simply an addition of N binary numbers of 𝑛 bits, followed by the 

Euclidean division circuit. Floating numbers are not supported and should not be because of 

the already very high complexity. The average would thus be given to the client as a quotient 

and a remainder. The client could then eventually convert this to a floating point number.  

 

The complexity of this circuit is quite big. First, the addition process takes (1 + 3𝑛) +

(1 + 3(𝑛 + 1)) + ⋯ + (1 + 3(𝑛 + 𝑁 − 1)) 

=
𝑁

2
(1 + 3𝑛 + 1 + 3(𝑛 + 𝑁 − 1)) 

=
𝑁

2
(6𝑛 + 3𝑁 − 1) 

= 3𝑁𝑛 + 1.5𝑁2 − 0.5𝑁 
 

The Euclidean division process then has a complexity of 

 6(𝑛 + 𝑁 − 1)2 + 𝑛 + 𝑁 − 1 



24 

 

 

The addition of these two complexities gives a complexity which grows very quickly as soon 

as the amount of binary numbers 𝑁 or their number of bits 𝑛 raise.  

 

To mitigate this complexity, another design was done. It is called Fast average and is limited 

to N numbers provided such that N is a power of 2. This is due to the fact that the 

homomorphic Euclidean division circuit is replaced by a simple right shift. This hence allows 

to keep the complexity to the addition part’s complexity. This is obviously rarely accurate but 

it can be useful for approximations of averages. 
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Chapter 5 
 
Implementation 
 

 

5.1 Programming language, libraries and source code 
 
The programming language was limited to C++ for the project, as any other languages would 

not had brought any added value. The development of the project was mainly about handling 

binary data and matrices so any programming language would meet the requirements. As 

HElib is written in C and C++, the best choice was to use C++ for the best compatibility and 

debugging.  

 

HElib requires the NTL and GMP libraries as explained in chapter 2. It is not complicated but 

long to install these two and HElib. This is why a single Makefile was implemented to 

automatically download, compile and link the necessary libraries. This is explained in more 

detail in Chapter 11.  

 

The source code of the project is organised as in the figure below. 

 

 
 

Figure 5.1.a: Tree representation of the source code structure 

 

 

This tree structure representation of the code shows different elements. The folders gmp-6.1.0, 

ntl-9.6.2 and HElib represent respectively the downloaded and compiled GMP library, NTL 

library and HElib. The subfolders and source files of these directories are not shown are they 
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are not very relevant in the project. The source directory contains the C++ source files and 

headers developed for the project. The corresponding compiled objects are stored in the objects 

directory. This allows a faster compilation of the executable HEapp.exe (Windows version). 

 

In order to compile only the necessary modified files in a precise order, the makefile was 

designed to also include this feature. It uses gcc-g++ or g++ to compile the necessary objects 

independently, it solves the dependencies required for building HEapp and can automatically 

compile or re-compile it, hence accelerating the development productivity. 

 

Note that the file main.cpp is the code which is run when launching HEapp. Other code can 

easily be written there. 

 

 

5.2 The core API: ciphertexts management 
 
The core API developed is implemented in the source file he.cpp. It is first a C++ wrapper for 

HElib. Indeed, HElib proposes very complex and tweakable features which are not always 

great when building programs on top of it. This is why several functions such as the generation 

of the key pairs, the encryption or decryption are incorporated in the object class HE 

implemented in he.cpp.  

 

The class HE also contains several new methods to handle ciphertexts. To simplify and make 

the code more modular, ciphertexts are stored in a dictionary or unordered map. Practically, 

each ciphertext is mapped to a 16-character random and unique alphabetic key. This was 

implemented for two reasons. First, it greatly simplifies the code and the general productivity 

of development. Secondly, it was implemented with the storage of ciphertexts in mind, for an 

eventual server/client communication using this project. The next step would be to serialize 

and store the ciphertexts with their associated map keys, which is already possible in HElib 

(further work: refer to HElib/source/Test_IO.cpp).   

 

The type for the unordered map key to a ciphertext is defined as mkt for map key type. An mkt 

variable is created only when a plaintext vector of binary values is encrypted. The encryption 

is implemented with the following function. 

 

 
mkt HE::encrypt(vector<long> ptxt_vect) { 

/*  Encrypts a plaintext vector of long values. Stores the ciphertext in  

    the unordered map. Returns the map key variable associated with  

    the new ciphertext */ 

    Ctxt ctxt(*publicKey, 0); 

    ea->encrypt(ctxt, *publicKey, ptxt_vect);     

    return storeCtxt(&ctxt);  

}  
 

Figure 5.2.a: Encryption function defined in he.cpp 

 

 

It uses the public key generated publicKey to encrypt the plaintext vector ptxt_vect and 

saves the resulting ciphertext in ctxt. The ciphertext is then passed to the storeCtxt(Ctxt* 

ctxt)function which as its name shows stores the ciphertext in the unordered map. Its 

implementation is shown below as well.  
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mkt HE::storeCtxt(Ctxt* ctxt) { 

/*  Takes a pointer to a ciphertext object and stores this one with a  

    unique and random key generated in the unordered map map_ctxts.  

    The key generated is then returned. */ 

    mkt k = generate_map_key(); 

    map_ctxts.insert(make_pair(k, *ctxt)); 

    return k; 

}  
 

Figure 5.2.b: StoreCtxt function defined in he.cpp 

 

 

This function is internal to the class or ‘private’ and is only used to add new ciphertexts or 

copy ciphertexts. The generate_map_key()creates a random 16 characters alphabetic 

(uppercase) key which is not already present in the unordered map, so which is unique. 

 

Similarly to the encryption function, the decryption function performs the inverse operation 

with the private key of the homomorphic scheme, called secretKey here. The following 

shows the implementation of the decryption function. 

 
vector<long> HE::decrypt(mkt k) { 

/*  Decrypts a packed ciphertext and stores the results in a vector of  

    long values. If the map key or the ciphertext does not exist,  

    the resulting vector is filled with 500 '9's, digit clearly  

    distinguishable from 0s and 1s in the binary system. */ 

    vector<long> ptxt_vect; 

    if (ctxt_exists(k)){ 

        ea->decrypt(map_ctxts.at(k), *secretKey, ptxt_vect); 

    } else { 

        for (unsigned i = 0; i < 500; i++){ 

            ptxt_vect.push_back(9); //Could raise an exception instead 

        } 

    } 

    return ptxt_vect; 

}  
 

Figure 5.2.c: Decryption function defined in he.cpp 

 

 

As explained in the comments, the function stores the decrypted values in a vector of long 

values. This should contain only 0s and 1s. If the ciphertext or its associated map key can’t be 

found, the resulting vector is filled with 9s which highlights a decryption error in the upper 

layers of the code. 

 

There are three main other methods to handle ciphertexts: copy, erase and replace. The copy 

function copies a ciphertext and returns a new map key generated for the copy. Its 

implementation is in the following code. 
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mkt HE::copy(mkt k){ 

/*  Copies the ciphertext associated with the map key k, stores the copy  

    with a new random and unique map key and returns this key.  

    If the map key provided does not exist, an empty key is returned. */ 

    mkt new_map_key = ""; 

    if (ctxt_exists(k)){ 

        Ctxt ctxt = map_ctxts.at(k); 

        new_map_key = storeCtxt(&ctxt); 

    } else { 

        new_map_key = ""; //empty key is an error 

    } 

    return new_map_key;  

}  
 

Figure 5.2.d: Copy function defined in he.cpp 

 

 

As ciphertexts can quickly become quite large, it is essential to have the necessary tools for a 

good memory management. This is why the erase function was implemented, to remove 

unnecessary ciphertexts and map keys from the unordered map. Its implementation is written 

below. 

 

 
void HE::erase(mkt k){ 

/*  Checks if the map key provided and its associated ciphertext exist. 

    If they don't, it displays an error message. 

    Otherwise, the map key and the ciphertext are erased from the  

    unordered map.*/ 

    if (ctxt_exists(k)){ 

        map_ctxts.erase(k); 

        map_keys.erase(find(map_keys.begin(),map_keys.end(),k)); 

    } else { 

        cout << className() << ": " << __FUNCTION__ << ": Error!" << endl; 

    } 

}  
 

Figure 5.2.e: Erase function defined in he.cpp 

 

 

To conclude this part on ciphertexts management, the replace function was implemented as 

shown in the following figure. It is used to shift binary numbers for example, as it will be 

shown in part 5.7. 

 

 
void HE::replace(mkt k, mkt k_replacement){ 

/*  Checks if both map keys and ciphertexts exist before doing anything.     

    It then replaces the ciphertext at map key k by a copy of the  

    ciphertext at map key k_replacement. If one of the map keys or  

    ciphertexts do not exist, an error message is displayed.*/ 

    if (ctxt_exists(k) && ctxt_exists(k_replacement)){ 

        Ctxt ctxt = map_ctxts.at(k_replacement); 

        map_ctxts.at(k) = ctxt; 

    } else { 

        cout << className() << ": " << __FUNCTION__ << ": Error!" << endl; 

    } 

}  
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Figure 5.2.f: Replace function defined in he.cpp 

 

 

 

5.3 The core API: Client keys generation 

 

The library HElib proposes a public key infrastructure (PKI) to encrypt and decrypt 

homomorphic ciphertexts, which is often more desirable than a symmetrical encryption 

scheme. For this project, a key pair hence contains a private key and its associated public key. 

This key pair is generated to encrypt and decrypt the homomorphic ciphertexts. 

 

First of all, several parameters have to be set to generate the key pair. One of these is the 

level parameter for example. The following C type structure was implemented to contain all 

the necessary parameters. 

 

 

 

 
typedef struct key_params{ 

    long m; 

    long p; // Defines the native plaintext space. Computations are 'mod p' 

    long r; // Defines the native plaintext space 

    long d; // Defines the plaintext space F(p^d) for packing ciphertexts 

    long k; // Security parameter (bits) 

    long L; // Level parameter or Circuit depth 

    long c; // Columns in key switching matrix (usually 2 or 3) 

    long w; // Hamming weight of a secret key, 64 recommended 

    long slb; // Slots Lower bound - to force ciphertexts to pack more slots. 

} key_params;  
 

Figure 5.3.a: Key generation parameters structure, defined in helper_functions.h 

 

 

The first three parameter, m, p and r define the native plaintext space as ℤ[𝑋]/(𝜙𝑚(𝑋), 𝑝𝑟). 

In our case, we always set p=2 and r=1 to support binary logic. m is found using the FindM 

function from HElib, which uses an optimised look-up table explained later.  

 

The d parameter defines the plaintext space of slots for packed ciphertexts as 𝐹𝑝𝑑. It is set to 

0 for this project. The security parameter k is the security level in bits of the private key to be 

generated, and is set to 256 here. The number of columns in the key switching matrix (used 

for SIMD purposes) is defined by c and is recommended to be set to 2 or 3. Setting it to 3 

showed a speed gain between 5% and 60% for complex operations such as the addition 

operation, so c is set to 3. Similarly, the hamming weight of the private key is set to the 

recommended value of 64. 

 

The two remaining parameters are the most variable and important in terms of performance: 

the level parameter L and the lower bound for the available plaintext slots slb. As it has now 

been explained many times, the level parameter should be the lowest possible. It is usually 

calculated as a function obtained from linear regression calculations or with a look-up table. 

The lower bound for the plaintext slots is not always used but can be quite useful in some 

cases. Indeed, as explained in chapter 4, this one can be raised above the strict automatic 
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minimum number of slots in order to shorten the time per operation at the expense of the 

overall time for all the operations to complete. As an analogy, this parameter slb acts 

similarly to a microprocessor pipeline. 

 

As a summary the following code shows how these parameters are set by default and 

specifically for an example function. 

 

 
//Common configuration 

key_params params; 

params.p = 2; 

params.r = 1; 

params.d = 0; 

params.k = 256; 

params.c = 3; 

params.w = 64; 

 

//Specific parameters 

params.L = 2.076*n + 1.672; //Linear regression 

params.slb = 400; //minimum of 400 plaintext slots 

params.m = FindM(params.k,params.L,params.c,params.p,params.d,params.slb,0);  
 

Figure 5.3.b: Key parameters initialization procedure example 

 

 

Once these parameters are set, they are passed to the generation function 

keyGen(key_params params) which then creates the key pair as well as several other 

elements necessary to the encryption and decryption of the ciphertexts. The function is long 

and complex and is thus only included in the source code, in source/he.cpp. When done, the 

function returns the number of available plaintext slots so that the client knows how much 

data can be inserted in each ciphertext. 

 

 
5.4 The core API: Adapting HElib arithmetic operations 

 

As the project uses an unordered map with map keys pointing to ciphertexts, all the 

arithmetic operations provided by HElib were adapted to the unordered map system. The 

following code was used to do so. 
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void HE::add(mkt k1, mkt k2){ 

    map_ctxts.at(k1) += map_ctxts.at(k2); 

} 

void HE::sub(mkt k1, mkt k2){ 

    map_ctxts.at(k1) -= map_ctxts.at(k2); 

} 

void HE::mul(mkt k1, mkt k2){ 

    map_ctxts.at(k1).multiplyBy(map_ctxts.at(k2)); 

} 

void HE::mul(mkt k1, mkt k2, mkt k3){ 

    map_ctxts.at(k1).multiplyBy2(map_ctxts.at(k2), map_ctxts.at(k3)); 

} 

void HE::neg(mkt k1){ 

    map_ctxts.at(k1).negate(); 

} 

bool HE::eq(mkt k1, mkt k2){ 

    bool comparePubkeys = true; 

    return map_ctxts.at(k1).equalsTo(map_ctxts.at(k2), comparePubkeys); 

}  
 

Figure 5.4.a: Wrapper to HElib’s arithmetic operators 

 

 

An important trick to understand for the following is that all the operations except eq overwrites 

the first ciphertext by the result of the operation. This means that for example 

add(“AJGDSLVMSDSGSOWH”,” FHKSTYICHHDXGMBL”) will overwrite the ciphertext 

associated with the key “AJGDSLVMSDSGSOWH“ by the addition resulting ciphertext. This 

is also where the copy function becomes handy. 

 

As it has been explained in the analysis and design chapter, only the add and mul operators 

were required to implement homomorphic logic gates. All the others are not useful in the binary 

domain. 

 

For an eventual future work based on the present project, note that the multiplyBy operation 

provided by HElib was chosen instead of the *= shortcut as it performs a relinearization on the 

ciphertext after the multiplication, and, from a practical point of view, greatly reduces the 

memory usage of the program.  

 

 
5.5 Homomorphic logic gates 

 

This part as well as the many following parts regarding circuits implementations should be 

used by the cloud computer or server in a client-server communication scheme. 

 

As it has been extensively described in the analysis and design chapter, logic gates were 

implemented using the add and mul operators implemented in 5.4. In the source code, each 

gate definition contains comments regarding its purpose, its inputs, its outputs and its 

homomorphic complexity. The following shows how the AND logic gate was implemented as 

an example. 
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void HE::AND(mkt k1, mkt k2){ 

    /*  Purpose: Binary AND of k1 and k2 

        Inputs: Bits of k1 and bits of k2 

        Outputs: k1 = k1 AND k2 

        Complexity: 1 multiplication */ 

    mul(k1, k2); 

}  
 

Figure 5.5.a: Implementation of the homomorphic AND gate 

 

 

As it has been explained in the analysis and design chapter, a ciphertext filled of 1s has to be 

provided to the cloud computer. In order to do so, the pattern illustrated below has to be 

followed. 

 

 

 
 

Figure 5.5.b: Pattern to provide the Ones ciphertext to the cloud computer 

 

 

The client has to simply generate a vector filled with 1s, encrypt it and send the ciphertext to 

the cloud computer. This is implemented in the function mkt HE::setOnes(long n) 

defined in he.cpp. The cloud computer would then receive the ciphertext and assign it to a 

map key named k_ones so that I can be used as a permanent reference to 1 for the client. It 

also deduces k_zeros by adding k_ones to k_ones. Again, this is implemented in the method 

set01 defined in he.cpp. 

 

This is not very dangerous in terms of security as the cloud computer can’t deduce anything 

from the received ciphertext except if all the SIMD results are equal to 1s or are equal to 0s 

across all the plaintext slots. This is very unlikely to happen and because it is the only 

solution found to implement a NOT gate and to go forward, it will still be used. This should 

also answer the security question raised about the NOT gate in chapter 4. The NOT gate is 

hence implemented with the following code. 
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void HE::NOT(mkt k1){ 

    /*  Purpose: Binary NOT of k1 

        Inputs: Bits of k1 

        Outputs: k1 = NOT k1 

        Complexity: negligible */ 

    add(k1,k_ones); 

}  
 

Figure 5.5.c: Implementation of the homomorphic NOT gate 

 

 

Finally, as a more complex example, the implementation of the OR gate is shown below. 

 
void HE::OR(mkt k1, mkt k2){ 

    /*  Purpose: Binary OR of k1 and k2 

        Inputs: Bits of k1 and bits of k2 

        Outputs: k1 = k1 OR k2 

        Complexity: 3 multiplication */ 

    mkt k2c = copy(k2); 

    NAND(k1,k1); 

    NAND(k2c,k2c); 

    NAND(k1,k2c); 

    erase(k2c); 

}  
 

Figure 5.5.d: Implementation of the homomorphic OR gate 

 

 

As a short explanation, the OR gate requires 3 NAND gates. As an AND gate needs one 

homomorphic multiplication, the OR gate requires 3 of them and thus has a complexity of 3. 

The copy and erase functions are called to make a temporary local copy necessary for this gate 

to execute.  

 

The remaining logic gates are implemented similarly in he.cpp. The next part covers 

combination circuits built on top of the logic gates previously implemented. 

 

 

5.6 Homomorphic combinational circuits 

 

The combinational circuits designed in chapter 4 are now implemented using the homomorphic 

logic gates previously implemented. Without going into the many details of the source code, 

these circuits take between 2 and 4 input bits and output between 1 and 2 bits. More details 

about their complexity can be found in the chapter 4. Their implementation is very similar to 

the implementation of the logic gates. As an example, the implementation of the half adder 

binary circuit is shown below. 
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void HE::HFADDER(mkt k1, mkt k2){ 

    /*  Purpose: Binary half addition of k1 and k2 (with carry out only) 

        Inputs: Bit k1 and Bit k2 

        Outputs: k1 = SUM and k2 = CARRY_OUT 

        Complexity: 1 multiplication */ 

    mkt k_Cout = copy(k1); 

    XOR(k1,k2); //k1 is SUM 

    AND(k2,k_Cout); //k2 is CARRY OUT 

    erase(k_Cout); 

}  
 

Figure 5.6.a: Implementation of the Half Adder combinational circuit 

 

 

The following combinational circuits were hence implemented similarly: 

 Half adder 

 Full adder 

 Half subtractor 

 Full subtractor 

 Half equal circuit 

 Full equal circuit 

 Smaller Than circuit 

 Half comparator 

 Full comparator 

 2:1 multiplexer 

 

As for the logic gate, these circuits process in parallel the plaintext slots of the ciphertext, and 

overwrite the first and eventually second input ciphertexts with the output ciphertexts. 

 

Please refer to the source code he.cpp from line 300 to line 402 for detailed explanations of 

each combinational circuit implemented.  

 

 

5.7 Homomorphic sequential circuits 

 

The sequential circuits are implemented on top of the combinational circuits. They are 

focused on performing operations on n bit numbers, instead of single bits.  

 

In a standard computer architecture, these require a clock and eventually memory operations 

in some cases. For this project, the clock is replaced by iterative loops such as a C++ for loop, 

and memory operations do not require any clock cycles or homomorphic operations as they 

are simply ciphertexts handling operations such as copy or replace. In comparison with a 

microprocessor architecture, this is great as the memory operations are not time consuming in 

comparison with the homomorphic operations.  

 

As it is explained in part 4.7, an n bit binary number is represented by n ciphertexts in a 

certain order. It is essential to understand this to grasp how the sequential circuits work. In 

the source code, a binary number is passed as a vector of mkt (map key type).  

 

The function PAD_BITS defined in he.cpp allow to feed binary numbers of different size into 

the sequential circuits. It is called in all the 2-inputs sequential circuits at the beginning and 
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basically pads the binary number with the smallest number of bits with leading zeros using 

the ciphertext associated with the map key k_zeros. The function is implemented with the 

following code. 

 
unsigned HE::PAD_BITS(vector<mkt> &k1_bit, vector<mkt> &k2_bit){ 

    unsigned nbits_1 = k1_bit.size(); 

    unsigned nbits_2 = k2_bit.size(); 

    if (nbits_1 < nbits_2){ 

        for (unsigned i = nbits_1; i < nbits_2; i++){ 

            k1_bit.push_back(copy(k_zeros)); 

        } 

        return nbits_2; 

    } else if (nbits_1 > nbits_2){ //just resize k2 with leading zeros 

        for (unsigned i = nbits_2; i < nbits_1; i++){ 

            k2_bit.push_back(copy(k_zeros)); 

        } 

        return nbits_1; 

    } 

}  
 

Figure 5.7.a: Implementation of the PAD_BITS function 

 

 

The return value of this function is then used as the maximum number of iterations to be 

performed in the iterative for loops for example. 

 

The ripple carry adder and ripple borrow subtractor follow the same pattern of implementation: 

they use once their respective half combination circuit and then n − 1 times their full 

combinational circuit. The ripple borrow subtractor code will thus be the only code shown here. 

As usual, deeper information on the sequential circuits can be found in the comments in he.cpp.  

 

 

 
void HE::RBSUBER(vector<mkt> &k1_bit, vector<mkt> k2_bit){ 

    /*  Purpose: Ripple Borrow Subtractor nbits x nslots 

        Inputs: Bit k1[0],..., bit k1[nbits - 1] and  

                bit k2[0],..., bit k2[nbits - 1] 

                Note that nbits can be different for k1 and k2 but these  

                would then be padded if it was the case 

        Outputs:    k1 = (nbits + 1) bits DIFFERENCE (unsigned and signed)  

                    and k2 = untouched 

        Complexity: 1 + nbits*5 multiplications */ 

    unsigned nbits = PAD_BITS(k1_bit, k2_bit); 

    vector<mkt> kc_bit(nbits); 

    for(unsigned i = 0; i < nbits; i++){ 

        kc_bit[i] = copy(k2_bit[i]);  

    } 

    k1_bit.push_back(copy(k_zeros)); //for sign 

    kc_bit.push_back(copy(k_zeros)); //for sign 

    nbits++; 

     

    HFSUBER(k1_bit[0], kc_bit[0]); //1 multiplication 

    for (unsigned i = 1; i < nbits; i++){ //this is nbits+1 actually 

        FLSUBER(k1_bit[i], kc_bit[i], kc_bit[i-1]); //5 multiplications 

        erase(kc_bit[i-1]); 

    } 

    erase(kc_bit[nbits - 1]); 

}  
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Figure 5.7.b: Implementation of the ripple borrow subtractor for n bit numbers 

 

 

First the function PAD_BITS is executed. A full copy of the binary number k2_bit is then 

performed and stored in kc_bit in order not to modify the binary number k2_bit as it is not 

necessary. Only k1_bit will be overwritten by the final result.  

 

For the ripple borrow subtractor, an extra bit is added to both numbers to support the sign bit. 

For the ripple carry adder, the extra bit is also added to support the eventual overflow. The 

size of the vector k1_bit is thus extended by one. 

 

The subtraction then begins with the half subtractor circuit followed by an n-1 for loop 

executing the full subtractor circuit with the correct bits or ciphertexts here. The erase 

function removes the unnecessary ciphertexts from the unordered map. 

It is also important to note that a ripple borrow subtractor could be implemented with full 

adders, but this would require the initial carry in to be forced to 1. This would be a waste of 

homomorphic multiplications as well as an added security risk. This is why the half and full 

combinational subtractors were previously implemented and used in this sequential circuit. 

 

 

Regarding the ripple comparator circuit, its implementation is similar and is shown below.  

 

 

 

 
void HE::RCMP(vector<mkt> &k1_bit, vector<mkt> &k2_bit){ 

    /*  Purpose: Ripple Comparator 

                 (equality and lower than, for unsigned numbers) 

        Inputs: Bit k1[0],..., bit k1[nbits - 1] and  

                bit k2[0],..., bit k2[nbits - 1] 

                Note that nbits can be different for k1 and k2 but these  

                would then be padded if it was the case 

        Outputs: k1[0] = (k1==k2) and k2[0] = (k1>k2) 

                 The rest of k1 and k2 is erased 

        Complexity: 1 + (nbits - 1)*6 multiplications */ 

    unsigned nbits = PAD_BITS(k1_bit, k2_bit); 

 

    //starts with MSB, 1 multiplication 

    HFCMP(k1_bit[nbits - 1], k2_bit[nbits - 1]);  

    for (int i = nbits - 2; i >= 0; i--){ 

        //Full comparator requires 6 multiplications 

        FLCMP(k1_bit[i], k2_bit[i], k1_bit[i+1], k2_bit[i+1]); 

        erase(k1_bit[i+1]); 

        k1_bit.pop_back(); 

        erase(k2_bit[i+1]); 

        k2_bit.pop_back(); 

    } 

}  
 

Figure 5.7.c: Implementation of the Ripple comparator 

 

 

It uses the PAD_BITS function and its half and full combination circuits the same way as the 

ripple borrow subtractor. However, the result is different. This circuit outputs two single bits, 
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where one is HIGH if the two binary numbers are equal, and the second one is HIGH if the 

first number is strictly greater than the other number. The equality bit and the greater than bit 

actually replace the bit representing the least significant bit (LSB) for the first and second 

binary numbers, respectively. In addition, all the ciphertexts other than the “LSB ciphertext” 

are erased, for both resulting binary numbers. The final result are thus only two ciphertexts, 

where the first one has the equality bits and the second one has the greater than bits. 

 

Concerning the ripple equality tester, it is implemented the same way as the ripple comparator 

but without the greater than feature. It outputs only one ciphertext containing the final resulting 

equality bit. This circuit was developed because of its low complexity of 𝑛 − 1, whilst the 

complexity of the ripple comparator is 3𝑛.  

 

Another very useful sequential circuit is the N:1 multiplexer. As stated in part 4.7, it allows to 

perform a selection of a binary number over another binary number. This is precisely essential 

for the Euclidean division implementation, as it will be shown in part 5.8.2. The N:1 

multiplexer is called NMUX in the source code and simply iterates over all the bits with the 

same selector bit (ciphertext). The output will hence be the first binary number if the selector 

bit is 1 and the second otherwise. 

 

The two last sequential circuits implemented are the left and right binary shifter. These are not 

actually performing any homomorphic operations and only moves ciphertexts around to shit a 

binary number by a plaintext constant. These operators are thus useful if used by other operators 

such as the multiplication.  

 

The right shift operation uses the replace function across all the bits of a binary number to shift 

the bits to the right, without knowing their actual content. It appends a new zeros ciphertext as 

the new MSB to keep the same number of bits for the output. 

 

The left shift does the opposite but will however extend the number of bits of the binary number 

by the amount of shift.  The following shows the code of its implementation, in order to have 

a clear idea. 

 
void HE::SHIFTL(vector<mkt> &k1_bit, const unsigned shift){ 

    /*  Purpose: Left shift of binary number and sets LSB to 0 

        Inputs: Bit k1[0],..., bit k1[nbits - 1] and the shift amount 

        Outputs: None, just replaces ciphertexts & extends the size of k1_bit 

        Complexity: negligible */ 

    for (unsigned i = 0; i < shift; i++){ 

        k1_bit.push_back(copy(k_zeros)); 

    } 

    unsigned nbits = k1_bit.size(); 

    for (unsigned j = 0; j < shift; j++){ 

        for (unsigned i = nbits - 1; i > 0; i--){ //MSB to LSB 

            replace(k1_bit[i], k1_bit[i-1]); 

        } 

        k1_bit[0] = copy(k_zeros); 

    } 

}  
 

Figure 5.7.d: Implementation of the left shift binary operator 
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All these sequential circuits allow to add, subtract, compare and shift binary numbers of any 

size and are a first great step towards usefulness. The next stage is to use all these sequential 

and combinational circuits to build even more complex circuits such as the multiplication 

operation and the Euclidean division operation. 

 

 

 

5.8 Homomorphic arithmetic circuits 

 

There are two arithmetic circuits implementing the multiplication and the Euclidean division 

respectively.  

 

5.8.1 The multiplication arithmetic circuit 

 

The multiplication implementation takes two 𝑛 bit binary numbers (or pad them with zeros so 

they match the same size) and overwrites/extends the 𝑛 ciphertexts of the first binary number 

by the 2𝑛 ciphertexts of the multiplication result. Indeed, as the cloud computer does not 

know the content of the numbers, the result has to be 2𝑛 bit to cover all the possible cases 

and its size can’t be reduced. The following figure sums up the size of the inputs and outputs. 

 

 
 

Figure 5.8.1.a: Multiplication operation – Inputs and Outputs 

 

 

As explained in part 4.9, it implements the long multiplication algorithm so it will use the 

ripple carry adder circuit, some AND logic gates and the left shift.  

 

Let 𝑛 be the number of bits of the longest input binary number. The program starts by 

creating 𝑛 copies of the first binary number 𝐴 represented by k1_bit. This does not require 

any homomorphic operations and is thus time efficient. 
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    //Setting binary rows to k1 

    vector< vector<mkt> > k(nbits, vector<mkt>(nbits)); 

    for (unsigned row = 0; row < nbits; row++){ 

        for (unsigned bit = 0; bit < nbits; bit++){ 

            k[row][bit] = copy(k1_bit[bit]); 

        } 

    }  
 

Figure 5.8.1.a: Multiplication operation – Creating n copies of k1_bit 

 

 

It then performs the AND and left shift of these copied rows with the second binary number 𝐵, 

and overwrites the rows with their respective result. 

 
    //ANDing and shifting binary rows 

    //Requires only one multiplication for ciphertext in term of complexity 

    //In terms of time, it needs nbits * nbits multiplications 

    for (unsigned row = 0; row < nbits; row++){ 

        for (unsigned bit = 0; bit < nbits; bit++){ 

            AND(k[row][bit], k2_bit[row]); //1 multiplication 

        } 

        SHIFTL(k[row], row); //0 multiplication 

    }  
 

Figure 5.8.1.b: Multiplication operation – AND and left shift of copied ‘rows’ 

 

 

Once this is done, the program has to add these rows together with the ripple carry adder circuit. 

To save an eventual ripple carry addition operation, the accumulator is set to the first row with 

the following code. Because the output is stored in the first binary number input k1_bit, the 

accumulator is actually k1_bit now. 

 

 

 
    //Setting accumulator to the first binary row 

    for(unsigned bit = 0; bit < nbits; bit++){ 

        erase(k1_bit[bit]); 

        k1_bit[bit] = copy(k[0][bit]); 

    } 

    k1_bit.push_back(copy(k_zeros)); //Adds a 0 as the new MSB  
 

Figure 5.8.1.c: Multiplication operation – Setting accumulator 

 

 

The ripple carry addition can then proceed to accumulate all the remaining 𝑛 − 1 rows in 

k1_bit. The following code is executed. 

 

 
    //Accumulates all the rows in result 

    //Complexity & Time: 4.5*nbits*nbits - 3.5*nbits - 1 

    for (unsigned row = 1; row < nbits; row++){ 

        RCADDER(k1_bit, k[row]); //1 + 3n, and increases n by 1  

    }  
 

Figure 5.8.1.d: Multiplication operation – Accumulating the computed rows 
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This is the most time consuming operation as shown by its homomorphic complexity. The 

code finally erases all the unnecessary ciphertexts and map keys such as the ones in the 

vector k. 

 

 

5.8.2 The Euclidean division arithmetic circuit 

 

The Euclidean division implementation takes two 𝑛 bit binary numbers and overwrites the 𝑛 

ciphertexts of the first and second binary number respectively by the 𝑛 ciphertexts 

representing the quotient and by the 𝑛 ciphertexts representing the remainder of the Euclidean 

division operation. The following block diagram summarizes this.  

 

 
 

Figure 5.8.2.a: Euclidean division – Inputs and outputs 

 

 

 

The source code implements the restoring long division algorithm stated in part 4.10. It is 

very long and contains many memory operations (copy, erase etc.) so it will not be shown 

fully here. Detailed explanations can be found in the comments of the code in he.cpp.  

 

The if – else condition statement described in the design of the Euclidean division is 

implemented with the NMUX N:1 multiplexer sequential circuit previously implemented. 

More precisely, the two possible values are pre-computed or copied, and the multiplexer will 

assign the right one depending on a single bit (sign bit of subtraction).  

 

The rest of the code is memory operations, binary shifts, and restore-test homomorphic 

subtractions. Overall, this circuit requires the ripple borrow subtractor circuit, the N:1 

multiplexer, the right and left shifts, a NOT gate and all the ciphertexts handling functions. 

 

 

5.9 Homomorphic average operation 
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For once, the implementation is quite simple. It is only a for loop of ripple carry adders 

followed by essentially the Euclidean division circuit. The following code implements the 

average circuit. 

 
void HE::AVERAGES(vector< vector<mkt> > &numbers, vector<mkt> &N){ 

    /*numbers is a vector of numbers, where each number is a vector of  

    encrypted bits. N is the divider which has to be provided to perform  

    the homomorphic euclidian division. The quotient and remainder of  

    the average are returned in numbers[0] and N respectively. */ 

    for (unsigned i = 1; i < numbers.size(); i++){ 

        RCADDER(numbers[0],numbers[i]); //accumulates all the numbers 

        for(unsigned b = 0; b < numbers[i].size(); b++){ 

            erase(numbers[i][b]); 

        } 

    } 

    PAD_BITS(numbers[0],N); 

    DIVIDE(numbers[0], N); 

}  
 

Figure 5.9.a: Source code for the Average circuit 

 

 

The ripple carry adder (RCADDER) allows to accumulate the numbers provided. The resulting 

sum is then divided by the divisor with the DIVIDE circuit (Euclidean division). 

 

Now, because this circuit is actually very limited because of its high complexity, the fast 

average circuit described in chapter 4 was also implemented.  Its code is longer as it contains 

checks regarding the number N of binary numbers provided. 
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void HE::FAVERAGES(vector< vector<mkt> > &numbers){ 

    /*numbers is a vector of numbers, where each number is a vector of  

    encrypted bits. This operation will loose the precision as no  

    remainder is calculated */ 

    unsigned N = numbers.size(); 

    if (N == 0){ 

        cout << className() <<": "<< __FUNCTION__ <<": N can't be 0"<< endl; 

        return; 

    } 

    float rs = log2(N); //amount of right shift 

    bool N_is_pow_of_2 = false; 

    for (unsigned i = 0; i < N; i++){ 

        if(rs == i){ 

            N_is_pow_of_2 = true; //or N is 1 which is fine too 

            break; 

        } 

    } 

    if (!N_is_pow_of_2){ 

        cout << className() <<": "<< __FUNCTION__ <<": N not power of 2."<< 

endl; 

        return; 

    } 

     

    for (unsigned i = 1; i < N; i++){ 

        RCADDER(numbers[0],numbers[i]); //accumulates all the numbers 

        for(unsigned b = 0; b < numbers[i].size(); b++){ 

            erase(numbers[i][b]); 

        } 

    } 

    for (unsigned i = 0; i < N - 1; i++){ 

        numbers.pop_back(); 

    }    

    SHIFTR(numbers[0], (unsigned)rs); //divides by a power of 2 

}  
 

Figure 5.9.a: Source code for the Fast Average circuit 

 

 

As the average circuit, this fast average accumulates the numbers. It then shifts right the 

numbers by 𝑟𝑠 = 𝑙𝑜𝑔2 (𝑁). As it will be shown in the next chapters, this implementation is not 

accurate but is way faster and lighter than the average circuit. 

 

 

5.10 Overall chart: complexity and circuit dependencies 

 

The following shows a sum up diagram showing the dependencies and complexities of all the 

circuits implemented so far. 
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Figure 5.10.a: Chart of the dependencies and complexities of all the circuits 
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Chapter 6 
 
Testing 
 

 

In order to verify the working and optimise the program developed, several methods were 

implemented. This chapter is structured as follows. The first part concerns unit tests which has 

been developed to verify the working of each homomorphic gate and circuit. The second part 

exposes the time testing methods used on sequential and arithmetic circuits. The last part show 

how to test the code implemented and push it to its limit. 

 

 

6.1 Unit testing 
 

In this project, unit testing consists in testing individually and independently each logic gate 

and circuit implemented, called units in this context, for proper operation. Unit testing has been 

coded to be automated and is separated in the following files. 

 TEST_GATES (.cpp and .h) which tests logic gates 

 TEST_CIRC_COMB (.cpp and .h) which tests combinational circuits 

 TEST_CIRC_SEQ (.cpp and .h) which tests sequential circuits 

 TEST_CIRC_ARITHM (.cpp and .h) which tests arithmetic circuits. 

 

Each of these generate random bits as inputs and verifies that the output of the gate or circuit 

corresponds to the C++ plaintext operation on the inputs. To do so efficiently, the Errors and 

the Conversion objects were designed and implemented in the helper_functions.cpp file.  

 

6.1.1 The Errors object 

 

The Errors object is simple and allow to gather results from several unit tests. It allows for 

example that one test fails but ten others pass, without stopping the program. It is declared in 

helper_functions.h as: 

 

 
class Errors{ 

    public: 

        Errors(string t); 

        void add(string name, bool error); 

        void display(); 

    private: 

        string title; 

        vector<string> names; 

        vector<bool> errors; 

};  
 

Figure 6.1.1.a: Declaration of the Errors object 

 

 

Its definition is appended below. 
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Errors::Errors(string t){ 

    title = t; 

} 

void Errors::add(string name, bool error){ 

    names.push_back(name); 

    errors.push_back(error); 

} 

void Errors::display(){ 

    bool no_error = true; 

    for (int i = 0; i < errors.size(); i++){ 

        if (errors[i]){ 

            no_error = false; 

            cout << title << ": Error occured for test " << names[i] << endl; 

        } 

    } 

    if (no_error){ 

        cout << title << ": ALL TESTS PASSED" << endl; 

    } 

}  
 

Figure 6.1.1.b: Definition of the Errors object 

 

 

It is used as shown in the code snippet below, coming from the combinational circuit unit test 

file. 

 
Errors TEST_CIRC_COMB::test(){ 

    Errors e("TEST_CIRC_COMB"); 

    e.add("HALF ADDER combinational circuit", test_HFADDER()); 

    e.add("FULL ADDER 1 bit circuit", test_FLADDER()); 

    e.add("HALF SUBTRACTOR combinational circuit", test_HFSUBER()); 

    e.add("FULL SUBTRACTOR combinational circuit", test_FLSUBER()); 

    e.add("HFEQUAL combinational circuit", test_HFEQUAL()); 

    e.add("FLEQUAL combinational circuit", test_FLEQUAL()); 

    e.add("SMALLER combinational circuit", test_SMALLER()); 

    e.add("HFCMP combinational circuit", test_HFCMP()); 

    e.add("FLCMP combinational circuit", test_FLCMP()); 

    e.add("MUX combinational circuit", test_MUX()); 

    return e; 

}  
 

Figure 6.1.1.b: Use of the Errors object 

 

 

The title of the Errors object is set in the first line of this function as TEST_CIRC_COMB. 

Each function starting with test_ represent one unit test for a specific circuit. Each of these 

functions return false if there is no error, and true if an error occurred. These are added to the 

Errors object so that it will detect which of the unit tests failed, as shown in its definition. At 

a higher layer calling the series of unit tests TEST_CIRC_COMB, the Errors object is received 

and its method display() has to be called to show if all test passed or to display the eventual 

errors.  

 

The Errors object is particularly very useful for a collection of unit tests relatively quick to run 

such as the test of all the homomorphic logic gates or combinational circuits. The user can 

easily see if his changes broke a part of the code in a relatively short time. On the other hand, 

the object may be less relevant for a set of very long operations such as the Euclidean division 
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circuit test with the multiplication circuit unit test. An example of the end-user unit testing 

display is shown below for illustration. 

 

 

 
 

Figure 6.1.1.c: Display produced by the Errors object 

 

On this screenshot, only the TEST_GATES and TEST_CIRC_COMB lines are displayed by 

the display() method of Errors.  

 

 

6.1.2 The Conversion object 

 

The Conversion object is also defined in helper_functions.cpp. It is a set of methods to convert 

various types of data between each other. Its methods and their purpose are listed in the 

following: 

 str2Bool: Converts a single character of bit to a Boolean 

 bool2Str: Converts a Boolean to its corresponding character ‘1’ or ‘0’. 

 long2Str: Converts a long integer to a string of its value. 

 long2bitStr: Converts a positive long integer to a string of bits. 

 bitStr2Long: Converts a string of bits to a long integer. 

 bitStr2LongStr: Converts a string of bits to a long integer in a string. 

 signedBitStr2Long: Converts a string of signed bits to a long integer. 

 signedBitStr2LongStr: Converts a string of signed bits to a long integer in a string 

 matrix2bitStrVec: Converts a matrix of bits, such as the ones obtained from the 

decryption of n ciphertexts, to a vector of binary strings. 

 matrix2LongVec: Converts a matrix of bits to a vector of integers (long). 

 matrix2SignedLongVec: Converts a matrix of bits to a vector of signed integers (long). 

This is only used for the ripple borrow subtractor unit test actually as its results are 

signed. 

 longVec2Matrix: Converts a vector if integers to a matrix of bits 

 

As it will be shown in the following, all these functions are very useful to easily handle bits, 

binary numbers and ciphertexts all together. For example, converting a vector of integers to a 

matrix of bits which can then be directly encrypted is easy with the method longVec2Matrix.  

 

 

6.1.3 Logic gates unit tests 

 

For the collection of logic gates unit tests, the inputs are set as all the 2 bit binary combinations 

possible, with the following code. 
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    v_in.resize(IO, vector<long> (nslots,0)); 

    v_in[0][0] = 0; v_in[1][0] = 0; 

    v_in[0][1] = 0; v_in[1][1] = 1; 

    v_in[0][2] = 1; v_in[1][2] = 0; 

    v_in[0][3] = 1; v_in[1][3] = 1; 

    for (int i = 0; i < IO; i++){ 

        k_constant[i] = he.encrypt(v_in[i]); 

    }  
 

Figure 6.1.3.a: Logic gates unit tests inputs definition 

 

 

The following will not describe the exhaustive list of all the unit tests for the logic gates, 

although you are welcome to have a look in TEST_GATES.cpp. For instance, the code for the 

test of the homomorphic OR logic gate is shown here. 

 
bool TEST_GATES::test_OR(){ 

    make_copies(); //k2 = k0 

    he.OR(k[0],k[1]); 

    for (int i = 0; i < IO; i++){ 

        v_out[i] = he.decrypt(k[i]); 

    } 

    for (int i = 0; i < nslots; i++){ 

        if (v_out[0][i] != (v_in[0][i] | v_in[1][i])){ 

            return true; //error 

        } 

    } 

    return false; 

}  
 

Figure 6.1.3.b: Unit test of the OR logic gate 

 

 

In this code, make_copies simply copies the ciphertexts in order to keep the original ciphertexts 

intact for the next unit tests. The object he represents the API developed in he.cpp. k[0] and 

k[1] are the map keys linking to the two ciphertexts respectively containing the encrypted bits 

of [0 0 1 1 0 0 … 0] and [0 1 0 1 0 0 … 0]. The resulting ciphertexts are then decrypted, and 

the resulting plaintext vector of binary values is checked against the C++ plaintext operation 

of the OR operation. It for any plaintext slot this is not valid, the test has failed and the function 

returns true to the Errors object. 

 

All the remaining logic gates unit tests are designed in the exact same way. They also all share 

a common key pair generated at the beginning of the set of unit tests, with a level parameter of 

3, which is the strict minimum for the logic gate requiring one homomorphic multiplication to 

operate correctly. 

 

 

6.1.4 Combinational circuits unit tests 

 

The collection of combinational circuits unit tests is similar to the logic gates one. Indeed, the 

combinational circuits take between 2 to 3 input bits and outputs between 1 and 2 bits. The 

inputs are set to all the possible binary combination with 3 bits, with the following code. 
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    v_in.resize(bits, vector<long> (nslots,0)); 

    for(int i = 0; i < nslots; i++){ 

        bitset<64> bin(i % (unsigned)pow(2,bits)); //max is 2^64 

        for(int b = 0; b < bits; b++){ 

            v_in[b][i] = bin[b]; //fill up matrix of bits 

        } 

    } 

    for (int i = 0; i < bits; i++){ 

        k_constant[i] = he.encrypt(v_in[i]); 

    }  
 

Figure 6.1.4.a: Combinational circuits unit tests inputs definition 

 

 

The variable bits is set to 3 in this case, so bin is the 
𝑛𝑠𝑙𝑜𝑡𝑠

23
 repetition of the sequence [000 001 

010 011 100 101 110 111], hence covering all the combinations of 3 bits.  

 

As for the logic gates, only one of the 10 unit tests will be explained here, the one for the full 

equality circuit, which is in the figure below. 

 
bool TEST_CIRC_COMB::test_FLEQUAL(){ 

    if(debug){ 

        cout << className() << ": Running " << __FUNCTION__ << "..." << endl; 

    } 

    make_copies(); 

    he.FLEQUAL(k[0],k[1],k[2]); 

    vector< vector<long> > v_out = he.decryptNbits(k); 

    for (int i = 0; i < nslots; i++){ 

        if(v_out[0][i] != ((v_in[0][i] == v_in[1][i]) && v_in[2][i])){ 

            return true; //error 

        } 

    } 

    return false; 

}  
 

Figure 6.1.4.b: Unit test of the full equality combinational circuit 

 

 

First, make_copies and he are the same as for the logic gates unit tests. k[0], k[1] and k[2] are 

the map keys linking to the three ciphertexts generated from the binary matrix v_in. The 

resulting ciphertexts are then decrypted with the shortcut function decryptNbits, and the 

resulting plaintext vectors of binary values are checked against the C++ plaintext operation of 

the equality block operation. It for any plaintext slot this is not valid, the test has failed and the 

function returns true to the Errors object. 

 

Again, the other unit tests are designed in the same way and share a common key pair generated 

once for whole set of tests. However, the level parameter L had to be raised to 5 to 

accommodate the most complex circuit, the full comparator, which require 4 homomorphic 

multiplications to operate correctly. Note that the level is set to 5 if the minimum bound of 

plaintext slots slb is not set (or set to 0). Otherwise, this level might have to be raised as the 

number of slots increases. 
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6.1.5 Sequential circuits unit tests 

 

The collection of sequential circuits unit tests is more complicated as these circuits take two 

binary numbers with a flexible number of bits 𝑛. To greatly simplify the tests, input binary 

numbers are now generated randomly. The following code generates the inputs, converts them 

to matrices of bits and encrypt it into 2𝑛 ciphertexts (N_numbers is set to 2). 

 
    inputs.resize(N_numbers, vector < long > (nslots,0)); 

    v_in.resize(N_numbers,vector<vector<long>>(bits,vector<long>(nslots,0))); 

    k_constant.resize(N_numbers, vector < mkt>(bits)); 

     

    //inputs to N bit circuits 

    for(unsigned i = 0; i < nslots; i++){ 

        inputs[0][i] = rand() % (unsigned)pow(2,bits); 

        inputs[1][i] = rand() % (unsigned)pow(2,bits); 

    } 

     

    //Converts inputs to bits into v_in for parallel ciphertexts 

    for(unsigned n = 0; n < N_numbers; n++){ 

        for(unsigned j = 0; j < nslots; j++){ 

            bitset<64> bin(inputs[n][j]); //max is 2^64 so max nbits = 64 

            for(unsigned b = 0; b < bits; b++){ 

                v_in[n][b][j] = bin[b]; //first ctxt (b = 0) is LSB 

            } 

        } 

    } 

     

    //Encrypts all the vectors into ciphertexts 

    for(unsigned n = 0; n < N_numbers; n++){ 

        for (unsigned b = 0; b < bits; b++){ 

            k_constant[n][b] = he.encrypt(v_in[n][b]); 

        } 

    }  
 

Figure 6.1.5.a: Sequential circuits testing – Generation of input ciphertexts 

 

 

Once these ciphertexts are created, they can be copied and used by each unit test. As before, 

only one of the 7 unit tests will be explained, for demonstration purposes: the test of the ripple 

carry adder circuit. Its code is written below. 

 
bool TEST_CIRC_SEQ::test_RCADDER(){ 

    //NO 2's complement, MSB is used for "overflow" (last carry out) 

    make_copies(); 

    t_start(); 

    he.RCADDER(k[0],k[1]); 

    t_end(__FUNCTION__); 

    vector<long> results(nslots); 

    results = conv.matrix2LongVec(he.decryptNbits(k[0])); 

    for (unsigned i = 0; i < nslots; i++){ //bit level 

        if (results[i] != (inputs[0][i] + inputs[1][i])){ 

            return true; 

        } 

    } 

    return false; 

}  
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Figure 6.1.5.b: Unit test of the Ripple carry adder 

 

 

This follows the same procedure as for the previous circuits. T_start and t_end are timing 

function which will be explained in the next part 6.2. The method matrix2LongVec from the 

Conversion object is used to convert the matrices of bits to a vector of integers. The result is 

then compared to the plaintext operation of the corresponding two inputs. All the other unit 

tests work in the same way. 

 

As these circuits are not too slow to complete, a common key pair is still generated at the start 

of the overall test. However, as there is now the 𝑛 bit parameter defining the number of bits of 

the binary numbers generated, the level parameter was designed to adapt to it. Indeed, several 

tests were conducted and the minimum level parameter 𝐿 was recorded for the most complex 

circuits (Ripple comparator). A linear regression algorithm was then applied to the points in 

the form (𝑛, 𝐿) in order to provide a best fit function to the level parameter. This allows the 

level parameter to be automatically adjusted to the number of bits 𝑛, without any user 

interaction. 

 

 

6.1.6 Arithmetic circuits unit tests 

 

The testing of the arithmetic circuits is exactly the same as for the sequential circuits except 

that each of the unit test now generate their own key pair. This was chosen because arithmetic 

circuits such as the multiplication operation usually take a long time to complete and have a 

different complexity. Indeed, for 𝑛 = 4 for example, the multiplication needs a level of 13 and 

the Euclidean division circuit needs a level of 50.  

 

The multiplication unit test works otherwise the same way as for example the ripple carry adder 

unit test. The unit test for the Euclidean division will however be shown to fully understand its 

working if it is not the case yet. 

 
    vector<long> q(nslots), r(nslots); 

    t_start(); 

    he.DIVIDE(k[0], k[1]); 

    t_end(__FUNCTION__); 

    r = conv.matrix2LongVec(he.decryptNbits(k[1])); 

    q = conv.matrix2LongVec(he.decryptNbits(k[0])); 

    ldiv_t expected; 

    for (unsigned i = 0; i < nslots; i++){ 

        expected = div(inputs[0][i], inputs[1][i]); 

        if ((expected.rem != r[i]) || (expected.quot != q[i])){ 

            return true; 

        } 

    } 

    return false;  
 

Figure 6.1.6.a: Unit test of the Euclidean division arithmetic circuit 

 

 

The vectors r and q contain respectively the remainders and the quotients resulting from the 

homomorphic Euclidean division. The structure expected is a C++ Euclidean division result 
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structure, and contain the result of the plaintext operation on inputs[0] and inputs[1] for each 

slot. It is then compared to r and q for each plaintext slot and will raise an error if there is a 

mismatch. 

 

 

 

6.1.7 Average and Fast average circuit unit test 

 

A unit test for the average circuit was implemented, where 𝑁_𝑁𝑈𝑀𝐵𝐸𝑅𝑆 binary numbers of 

size 𝑛 are generated and converted to ciphertexts similarly as for the other circuits. These are 

then passed to the homomorphic average circuit, which returns the quotient and remainder of 

the operation.  

 

This test is actually the only test failing very quickly as the number of bits goes above 3 bits or 

the number of binary numbers goes above 2. This is not due to an implementation error, but to 

the complexity being way too high. If one of them is increased, the level parameter has to be 

greater than 70; the program then needs more than 4 gigabytes of RAM to run for a very long 

time. This is way too much resources and time lost in this circuit, and is the program is often 

killed by the operating system. So the test actually works for parameters such as 𝑛 = 3 and 

𝑁 = 2 for example.  

 

Regarding the fast average circuit, the unit test is the same as for the average circuit, except 

that only the quotient is verified (no remainder is calculated). Apart from the generation of the 

key and inputs, the unit test essentially is based on the following piece of code. 

 
    vector<long> q(nslots); 

    t_start(); 

    he.FAVERAGES(k); 

    t_end(__FUNCTION__); 

    q = conv.matrix2LongVec(he.decryptNbits(k[0])); 

    ldiv_t expected; 

    unsigned expected_sum; 

    for (unsigned i = 0; i < nslots; i++){ 

        expected_sum = 0; 

        for (unsigned n = 0; n < N_NUMBERS; n++){ 

            expected_sum += inputs[n][i]; 

        } 

        expected = div(expected_sum, N_NUMBERS); 

        if (expected.quot != q[i]){ 

            return true; 

        } 

    } 

    return false;  
 

Figure 6.1.7.a: Unit test for the fast average circuit 

 

 

This one was passed successfully for various parameters such as N=4 and n=4. 

 

 

As a conclusion to this part, every logic gate and every circuit implemented have their 

corresponding efficient unit tests. All the tests are correctly implemented and are all passed by 
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the circuits. Therefore, all the circuits work fully. The unit tests also serve as example as how 

to use the circuits developed for a custom application. 

 

 

6.2 Time measurements 

 

A relatively simple object class called Timing was implemented in helper_functions.cpp and 

serves as an easy, reusable and precise timer. It is not used for the logic gates and combinational 

circuits tests as these are relatively quick and give stable near-constant timing results. On the 

other hand, the time of execution of sequential and arithmetic circuits highly depend on the 

number of bits 𝑛, which yield real-world use cases results. This is why these two last kind of 

circuits are timed for various values of 𝑛. Note that this timing function is only enabled if the 

debug flag is set to true in the highest layer of the code. 

 

Both test files TEST_CIRC_SEQ and TEST_CIR_ARITHM implement the methods t_start() 

which starts the timer, and t_end(string name) which displays the overall time taken by the 

“name” test, as well as its time per operation. Indeed, because the SIMD mode is used, the time 

per operation is defined by: 

 

𝑇𝑖𝑚𝑒 𝑝𝑒𝑟 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑇𝑖𝑚𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡 𝑠𝑙𝑜𝑡𝑠 (𝑛𝑠𝑙𝑜𝑡𝑠)
 

 

 

As an example display, the following screenshot would be obtained for the set of sequential 

circuits unit tests.  

 

 

 



53 

 

 

Figure 6.2.a: Example screenshot of the Timing measurements displayed 

 

 

Note also that for the timing measurements per operation to be more accurate, the slb parameter 

(lower bound of plaintext slots) is set to 1023 to force all the operations to use 1024 plaintext 

slots. 

 

A final important element is that all the timing tests are executed on a single core of an i5 6500 

CPU processor. 

 

 

6.3 Pushing the circuits to their limit 

 

All the source code has been built with the aim of being able to easily tweak key generation 

parameters and algorithms used. Indeed, the level parameter, the minimum number of slots as 

well as other parameters such as the level of security k can be changed quickly. The many 

sequential and arithmetic circuits implemented can probably be enhanced with better 

algorithms which can then be easily tested with the unit tests previously described.  

 

But circuit should be pushed to their limit really by testing out how to get the lowest time per 

operation for various numbers of plaintext slots and level parameter values. 

  

It should also be noted that most if not all the code implemented contain a debug switch variable 

which can be set to the user to display information, warning and more error messages.  

 

Note that the amount of RAM used is generally not an issue but becomes a limit for complex 

circuit requiring very high level parameter greater than 65, such as the average circuit. 
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Chapter 7 
 
Results 
 

 

This chapter concerns the results obtained from tweaking the parameters, timing the circuits 

and comparing them. It is structured as follows. First, timing and behaviour of homomorphic 

logic gates is analysed and described. Analysis of the performance behaviour of the 

combinational and sequential circuits is then covered. Finally, the time analysis of the 

arithmetic circuits is carried out and highlights the limits of the homomorphic encryption. 

 

7.1 Logic gates 

 

Even if the time a homomorphic logic gate takes to complete is not relevant in itself, it is 

important to have an idea of how much time a gate takes to complete relatively to other ones. 

Note that their completion time depend on the level parameter so it should more be taken as a 

relative information. 

 

To measure this, the level parameter was kept at 3 and the following code was executed for 

each gate. 

 
    make_copies(); 

    t.start(); 

    for (unsigned i = 0; i < 1000; i++){ 

        make_copies(); 

        he.AND(k[0],k[1]); 

    } 

    t.end();  
 

Figure 7.1.a: Logic gate time measurement code 

 

This runs 1000 times the logic gate on copied ciphertexts - to keep the level parameter at 3 

without error. The final time measurement is then divided by 1000 to yield the time a particular 

logic gate needs to complete. 

 

The following results were obtained, for the levels 3, 10, 15, 18, 20, 30 and 50. 
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Figure 7.1.b: Time in milliseconds of homomorphic logic gates for different Level 

parameters, and M/A ratio for different level parameters 

 

This table shows the time in milliseconds for each logic to complete on various levels. The 

rightmost column contain the M/A ratio which actually is the ratio of time needed for a 

homomorphic multiplication divided by the time needed for a homomorphic addition (XOR, 

NOT, XNOR gates). These results yield the following two plots. 

 

 

 
 

Figure 7.1.c: Time in milliseconds of homomorphic logic gates vs Level 

 

 

The logic gates are grouped into two subsets, one where the homomorphic addition is needed, 

and the other one where it is the multiplication. The bottom line (blue) represents the time 

evolution of the gates requiring one or more additions operations only, whilst the green one 

groups the other gates requiring the multiplication operation. This shows that the homomorphic 

multiplication not only adds noise to the ciphertext (and thus forces L to be higher), but also 

consumes more time as the level grows higher. The next figure shows a plot of the M/A ratio. 
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Figure 7.1.d: M/A ratio vs Level 

 

 

This shows that time needed for multiplication is not proportional to the time needed for a 

homomorphic addition. However, it reaches its maximum at L=20 to stabilises at a ratio of 26. 

This means that for very complex operations, the multiplication requires 26 times the time of 

a homomorphic addition. 

 

Another small element noticed was that the security parameter k needed at the key pair 

generation can influence the speed of execution in some cases. It was seen that the gates were 

the fastest for 𝑘 = 128, which is actually also a secured enough parameter. Hence all the unit 

tests have their security parameter set to 128. 

 

The next part will now cover results obtained from the implemented combinational circuits. 

 

 

7.2 Combinational circuits 

 

The following table shows all the combination circuits with their complexity and their time of 

execution is milliseconds. 
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Figure 7.2.a: Combinational circuits complexity and time, for L=5 

 

This highlights how the complexity is also related to time needed for a circuit to complete. 

Note some circuits have the same complexity but different duration. This is due to the fact that 

L is set to a low value of 5 (not for real use cases) so an a homomorphic multiplication is only 

12 times longer than a homomorphic addition, according to figure 7.1.d. To verify this, the 

timing measurements was performed again at L=15. 

 

 
 

Figure 7.2.a: Combinational circuits complexity and time, for L=15 

 

For L=15, the M/A ratio is higher at 27 instead of 12 and thus the complexity is now fully 

correlated with the time required for a circuit to complete. This also signifies that for complex 

circuits requiring a high level parameter L, the homomorphic addition will not influence the 

time required for this circuit. Instead, only the homomorphic multiplication will impact as it 

has been shown here. 

 

 

7.3 Sequential circuits 

 

It is very difficult to fully explore the sequential circuits. In this project, the focus will be on 

changing the level parameter, the slb parameter (lower bound of plaintext slots) and the 

number of bits n for the input binary numbers. The number of bits was limited to 16, as going 
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above will often take very long to test and may as well create some memory errors due to the 

program trying to use more than 2 Gigabytes of RAM (limit which could be lifted thought). 

 

The ripple carry adder was extensively tested for all values of 𝑛 ranging from 2 to 16, and 

with a slb parameter of 800. This effectively forced the number of plaintext slots to be 1024 

for low levels, and 1800 for higher level parameters. The following table of results was 

obtained. 

 

 

 
 

Figure 7.3.a: Time measurements and level for the ripple carry adder 

 

 

As it was expected, the overall time and time per operation both increase with the complexity 

of the circuit. However, it is interesting to compare the evolution of these two times, which is 

done in the following graphs. 

 

 
 

Figure 7.3.b: Overall time and time per operation vs Complexity, for the ripple carry adder 
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This shows that the overall time and timer per operation raise proportionally up to the level 

where the number of slots switches from 1024 to 1800. The overall time then raises more than 

the time per operation. This implies that the raising the number of plaintext slots could increase 

the overall time of execution but would actually lower the time per operation. To verify this, 

we performed the tests again with the slb parameter set to 1700, for a number of bits ranging 

from 2 to 8. The timing results are then plotted together with the previous obtained where there 

were only 1024 plaintext slots. 

 

 
 

Figure 7.3.c: Overall time and time per operation vs Complexity, for the ripple carry adder, 

for 1024 and 1800 plaintext slots 

 

 

As it can easily be seen on this graph, the 1800 slots version takes a longer time to complete 

overall but the SIMD mode pays off here. Indeed, the time per operation is shorter than for the 

1024 slots version. On top of this, the gap appears to be even larger as the complexity grows. 

This implies that for complex homomorphic circuits, if the time per operation is more important 

that the overall time of execution, the plaintext slots should be expanded to take full profit of 

the SIMD mode. This should also answer the question raised about SIMD in part 4.5. 

 

In a more practical context, this graph shows that for the addition of two binary numbers of 8 

bits (corresponding to the complexity 25), it would take 13 milliseconds per addition for 1800 

slots packed in the each ciphertext, and 24 milliseconds for the 1024 slots version. This could 

be very useful for reducing the time of massively parallel computations. 

 

The exact same results are obtained for the ripple borrow subtractor as it has essentially the 

same complexity. All the other sequential circuits with a positive homomorphic complexity are 

governed by the same rules, summarised here: 

 Overall time and time per operation increases almost linearly with complexity for the 

same number of plaintext slots. 

 Increasing the number of plaintext slots reduces the time of execution per operation 

(SIMD) 

 Increasing the number of plaintext slots increases the overall time of execution 
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Note that the set of unit tests for the sequential circuits contain a switch-case structure acting 

as a look-up table for the best level parameter for each number of bits, for the ripple carry adder 

as well as all the other circuits with the same or a lower complexity. The ripple comparator 

should not work as its complexity is higher for a number of bits greater than 4, however it 

actually works for the level parameters of the ripple carry adder in all cases. The following part 

will explore the performance of the more complex arithmetic circuits implemented. 

 

 

7.4 Arithmetic circuits 

 

This concerns the results obtained from the binary multiplication and the Euclidean division 

circuit and the two average circuits. From the trial and error method, the following minimum 

level parameters were obtained for various values of n (2 to 9 bits) and for 1024 plaintext slots.  

 

  
 

Figure 7.3.c: Minimum level parameter for arithmetic circuits, for various n. 

 

 

 

The average circuit could only be tested with up to 2 numbers of 3 bits. This already required 

a very high minimum level of 45. For numbers of 4 bits, the minimum level should be around 

85 but this would require too much RAM and time and would often fail because of Memory 

Errors. On the other hand, the fast average circuit could easily take 4 binary numbers of 

different size as it doesn’t use the Euclidean division circuit.   

 

Regarding the Euclidean division circuit, it could not reach numbers with more than 5 bits as 

the associated minimum level parameter would then be around 70, producing memory errors 

and demanding way too much time. 
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As a reference point, the minimum level parameters for the ripple carry adder were added on 

this plot. The multiplication circuit requires decent levels L, and does not raise any issue for 

number of less than 10 bits. Over that limit, it will be very slow and will require very high level 

parameters.  

 

Regarding the fast average circuit, the result is quite a surprise. It actually performs very closely 

to the ripple carry adder, even though it actually uses 𝑁 − 1 times the ripple carry adder, with 

an accumulator growing in size at each iteration. After a lot more testing, this is still a mystery, 

which is actually great here. 

 

The following shows the time per operation in milliseconds of each arithmetic circuit for values 

of 𝑛 ranging from 2 to 8. 

 

 

 
 

Figure 7.3.c: Time per operation (milliseconds) for arithmetic circuits, for number of bits n 

ranging from 2 to 8. 

 

This figure highlights the very slow operation of the average and Euclidean division circuit, 

which should actually be avoided for real use. The multiplication circuit is relatively efficient 

but will tend to be exponentially slower as n grows beyond 7, as shown on the graph. It more 

precisely reaches its maximum capability at numbers of 9 bits. Now the fast average circuit is 

relatively fast and efficient. For the cost of losing the “floating point” which would be in the 

form of a remainder, its time of execution can’t even be compared with the pure average circuit. 

Even if you lose some precision and can only perform average on N numbers where N is a 

power of 2, this should actually be a circuit used for real cloud computing purposes. 
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Chapter 8 
 
Evaluation 
 
From logic gates to complex arithmetic circuits, this project went quite far in terms of 

pushing existing FHE technologies such as HElib to usability. Even if FHE is still slow, it 

was tested for concrete applications and some features were found to be possibly useful. 

 

First of all, logic gates implemented are actually quite fast with the SIMD mode. For a level 

parameter below 20, they each take a maximum of 350 milliseconds to complete which is 

decent enough. Even if this value is far from the nanoseconds that present silicon logic gates 

take, it is still a good starting point. Above the 30 level their time of execution however 

increases substantially and become not very usable anymore.  

 

Binary additions, subtractions and comparisons take between 1 and 50 milliseconds per 

operation for numbers between 2 bits and 16 bits, as it has been shown in the results section 

concerning the sequential circuits. This is a decent time which could still be used for cloud 

computing purposes.  

 

The binary multiplication implemented uses the addition circuit as well as the AND logic 

gate. It also has a decent time of execution for numbers up to 8 bits. It could therefore also be 

used for a few operations in a cloud computing context. 

 

The Euclidean division circuit shows however the limit of homomorphic encryption. For only 

4 bits numbers, this circuit requires a level of 50, requiring some 2.6 Gigabytes of RAM and 

taking 280 milliseconds per operation. The time is not too bad, but as soon as the number of 

bits in increased it becomes exponential. For 5 bits numbers, 475 milliseconds per operation 

and 3.5 Gigabytes of RAM are required for example. This circuit has very long execution 

times and requires ridiculous amount of memory, which is not convenient at all.  

 

The most complex circuit, the homomorphic average, uses both the addition and the 

Euclidean division circuits. Its time of execution and the amount of RAM it needs are 

therefore enormous again. It is therefore not usable at all for now. 

 

Finally, a trick version of the average circuit, called the fast average circuit, uses binary right 

shifts instead of the Euclidean division to only provide the quotient result of an average of N 

numbers, where N is a power of 2. It is very light and fast and can therefore be used without 

trouble for numbers of 16 bit for example.  

 

The project has thus implemented two version of the average operation, and has shown that 

some of the operations implemented can be used with decent times.  

The limitation of the average circuit was slightly expected since the beginning, but there exist 

many ways to enhance it with further work, as it will be shown in the following chapter. 
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Chapter 9 
 
Further Work 
 

 

9.1 Changing the algorithms  
 

The logic gates and combinational circuits are already optimised and there will probably be 

nothing else to do. However, many of the sequential circuits could be changed and optimised.  

 

The ripple carry adder could be replaced with a ripple-block carry look-ahead adder (RCLA), 

or a block carry look-ahead adder (BCLA) or with even more performant parallel prefix adders 

such as the Han-Carlson adder. These designs are very complex to understand but would lower 

the complexity of the ripple carry adder. The ripple borrow subtractor could also benefit from 

the symmetric design. As these two circuits are the actual limiting factor of more complex 

operations such as the Euclidean division circuit, this would certainly propose a greater horizon 

of development.  

 

In addition, because the wiring complexity and the “power consumption” of current digital 

circuits designed should not be a limit in this context, more complex algorithms such as the 

Wallace tree could also be implemented for the addition operation circuit.  

 

The N:1 multiplexer used in the Euclidean division circuit and the ripple borrow subtractor 

circuit could both be replaced by an efficient conditional subtractor. However, it will be 

difficult to maintain the flexibility of having a variable number of bits for the inputs of the 

system. 

 

 

9.2 Adding homomorphic circuits 

 

Parallel circuits for addition or multiplications could be implemented to increase the throughput 

of the operations. This would effectively reduce the time per operation without raising the level 

parameter too much.  

 

Other circuits such as the multiply-accumulator (MAC) could also be added to provide a better 

performance in some cases.  

 

There are also many circuits such as parity check circuit or the square root circuit which could 

be implemented to provide even more homomorphic features. 

 

 

9.3 Using shifts for plaintext constant multiplications 
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When combined with the addition operation, the binary shifts can multiply a number very 

quickly. This could be implemented and adapted for multiplying an encrypted number (in the 

form of multiple ciphertexts) by a constant number known by the cloud computer.  

 

 

9.4 Bootstrapping 

 

In some cases, such as for the Euclidean division, where the level has to be very high, 

bootstrapping is faster than the levelled homomorphic encryption. As HElib supports it, it could 

be implemented in highly complex circuits otherwise requiring a high level. 

 

 

9.5 Parallel computing and GPUs 

 

The code of this project was always running on a single core of the processor, so it could 

potentially benefit from using multiple cores. Even better, it could be running on a graphics 

processor unit (GPU) with the cuHE library. Of course, this would require to rewrite the code 

in its entirety. But the speed gains should probably be up to 500 times, which is not negligible. 

This is an ambitious future work to be done. 

 

 

9.6 Client – Cloud computer interface and networking 

 

Once the performance of the circuits and the features are satisfactory, the whole code could be 

split into a part for the cloud computer and a cloud for the client. Note that this has been 

commented in the he.cpp file to make the task easier. The client would essentially need the key 

generation, the encryption and the decryption functions. On the other hand, the server would 

need all the homomorphic operations and ciphertexts handling. A more user friendly interface 

could be implemented, starting with the Conversion functions defined in helper_functions.cpp 

precisely.  

 

 

 

Overall, there are many possibilities and work that can be carried out from this project. I hope 

someone will make great use of what has been done. Please do not hesitate to contact me if you 

have any question regarding these possibilities and enhancements. 
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Chapter 10 
 
Conclusion 
 

 

The project has shown several facts. First, it has demonstrated how real cloud computing 

calculations could be implemented with homomorphic encryption. The limits of current 

homomorphic encryption schemes were explained and analysed. Several tricks were found to 

overcome those and to design efficient homomorphic binary circuits. Some complex circuits 

such as the pure average circuit clearly showed the bounds of homomorphic encryption. But 

with enough design cleverness and compromises, it was also demonstrated that homomorphic 

encryption can be used in a few cases. There are also many horizons to continue this project as 

described in chapter 9. I hope you enjoyed reading this long report and wish you the best if you 

plan on continuing this project. 
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Chapter 11 
 
User guide 
 
As it has been explained in the background chapter, several libraries and files have to be 

downloaded, compiled and installed on the machine to support the project’s program 

developed. A makefile was thus designed to simplify this long installation. You can refer to 

the webpage http://qdm12.github.io/hbc/ where all the installation procedure is described for 

all the platforms. You can also access the GitHub repository at 

https://github.com/qdm12/hbc. The installation will be described here as well for 

convenience. 

 

By default, the program built runs all the sets of unit tests on the homomorphic circuits, from 

the main.cpp source file actually. You can run the built program HEapp with ./HEapp. 

 

The installation requires an internet connection to download source files and other libraries.  

The first installation method is by using a makefile I implemented which works for Linux and 

Cygwin. The second method is to do everything manually. This may be more safe for Mac 

OSX, OS on which the makefile has not been tested yet.  

 

 

11.1 Makefile, for Cygwin and Linux 
 

NOTE 1: The makefile has to be copied in an empty directory. 

NOTE 2: FOR CYGWIN ONLY – Due to permission restrictions on Windows OS, the   

      modules git and gcc-g++ have to be installed manually  

      with the Cygwin installer before launching the makefile. 

NOTE 3: The makefile will automatically install the following modules 

 apt-cyg (windows only) 

 curl 

 m4 

 perl 

 git and g++ (Linux only) 

 

To download, compile and install HElib and other libraries: make HElib 
To download, compile and run the project: make project 
To re-compile the project source directory & run HEapp: make HE 
For more information: make help 
 
 

11.2 Manual Installation 
 
The manual installation is explained in details on the Github webpage precisely here. 

 

http://qdm12.github.io/hbc/
https://github.com/qdm12/hbc
https://github.com/qdm12/hbc/blob/master/README.md#manual-setup
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https://eprint.iacr.org/2011/133.pdf
https://eprint.iacr.org/2011/566.pdf
http://eprint.iacr.org/2009/616.pdf
http://shaih.github.io/HElib
https://github.com/shaih/HElib
http://eprint.iacr.org/2014/106.pdf
http://www.shoup.net/ntl/
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9. Title: GMP library 

Link: https://gmplib.org/ 

 

10. Title: HEIDE: An IDE for the homomorphic encryption library HElib 

Authors: Grant Frame (Faculty of California Polytechnic State University) 

Date: June 2015 

Link: 

http://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=2523&context=theses 

GitHub: https://github.com/heide-support/HEIDE 

 

11. Title: An R package for fully homomorphic encryption 

Authors: Louis J. M. Aslett  

Date: 3 August 2015 

Link: http://www.louisaslett.com/HomomorphicEncryption/ 

Link: http://www.louisaslett.com/TechReports/Aslett_Esperanca_Holmes_2015a.pdf 

 

12. Title: Somewhat practical fully homomorphic encryption 

Authors: Junfeng Fan and Frederik Vercauteren  

Date: 17 march 2012 

Link: https://eprint.iacr.org/2012/144.pdf 

 

13. Title: cuHE: A Homomorphic Encryption Accelerator Library 

Authors: Wei Dai and Berk Sunar (Worcester Polytechnic Institute, USA) 

Date: 17 August 2015 

Link: https://eprint.iacr.org/2015/818.pdf 

Github: https://github.com/vernamlab/cuHE 

 

14. Title: Homomorphic AES Evaluation Using NTRU 

Authors: Yarkin Doroz, Yin Hu, Berk Sunar (Worcester Polytechnic Institute) 

Date: 11 January 2014 

Link: https://eprint.iacr.org/2014/039.pdf 

 

15. Title: On-the-fly multiparty computation on the Cloud via Multikey FHE 

Authors: Adriana Lopez-Alt, Eran Tromer, Vinod Vaikuntanathan 

Date: 22 October 2014 

Link: https://eprint.iacr.org/2013/094 

 

16. Title: krypto: C++ Implementation of Multivariate Quadratic FHE 

Authors: kryptnostic  

Date: 2015-2016 

Link: https://www.kryptnostic.com/ 

Github: https://github.com/kryptnostic/krypto 

 

17. Title: FHEW: Bootstrapping homomorphic encryption in less than a second 

Authors: Leo Ducas (Centrum Wiskunde & Informatica, Amsterdam) and Daniele   

    Micciancio (University of California, San Diego) 

https://gmplib.org/
http://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=2523&context=theses
https://github.com/heide-support/HEIDE
http://www.louisaslett.com/HomomorphicEncryption/
http://www.louisaslett.com/TechReports/Aslett_Esperanca_Holmes_2015a.pdf
https://eprint.iacr.org/2012/144.pdf
https://eprint.iacr.org/2015/818.pdf
https://github.com/vernamlab/cuHE
https://eprint.iacr.org/2014/039.pdf
https://eprint.iacr.org/2013/094
https://www.kryptnostic.com/
https://github.com/kryptnostic/krypto
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Date: 8 October 2014 

Link: https://eprint.iacr.org/2014/816.pdf 

Github: https://github.com/lducas/FHEW 

Slides: http://www.math.uci.edu/~asilverb/CryptoDayFiles/uci15b.pdf 

 

18. Title: Public Key Compression and Modulus Switching for Fully Homomorphic  

          Encryption over the Integers 

Authors: Jean-Sebastien Coron, David Naccache and Mehdi Tibouchi 

Date: January 2012 

Link: http://eprint.iacr.org/2011/440.pdf 

Github: https://github.com/coron/fhe 

 

19. Title: Homomorphic Encryption and applications (book) 

Authors: Xun Yi, Russell Paulet and Elisa Bertino 

Date: September 2014 

Link: http://www.springer.com/us/book/9783319122281 

 

20. Title: Divide algorithm version 3, from ALU design: Division and Floating Point 

Authors: Ann Gordon-Ross, Electrical and computer engineering, University of  

    Florida 

Link: http://www.ann.ece.ufl.edu/courses/eel4713_12spr/slides/Lec8-division.pdf 
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Appendices 
 
A.1 List of abbreviations 
 
FHE: Fully homomorphic encryption 

SIMD: Single-Instruction-Multiple-Data 

SwHE: Somewhat homomorphic encryption 

NTL: Number Theory Library 

GMP: GNU Multiple Precision Arithmetic 

DHS: Doroz-Hu-Sunar 

LTV: Lopez-Tromer-Vaikumtanathan 

GPU: Graphics processing unit 

API: Application Programming interface 

XOR: Exclusive OR logic gate 

Mkt: Map key type 

PKI: Public key infrastructure 

LSB: Least significant bit 

MSB: Most significant bit 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 


