

Department of Electrical and Electronic Engineering Imperial College London

 Real-time digital signal processing

 Report on “Real time implementation of FIR filters” (laboratory 4)
 37 pages total

Report written by:

Quentin McGaw, CID 00746622 Username QDM12

Alexandra Rouhana, CID 00736752 Username AR4412

1. Conceptual objective

 In this laboratory, the final objective is to obtain a finite impulse response (FIR) filter

satisfying the following diagram (figure 1.1), which is given to us in the assignment

document.

 Figure 1.1 : Conceptual FIR filter specifications (from PDF document given)

 Several parameters are deduced from this drawing in order to design the FIR filter.

These are described in the tables below (figure 1.2, figure 1.3).

Parameter Frequency range(s) (Hertz)

Stop bands [0 - 240], [2450 - …]

Transition bands [240 - 440], [2000 - 2450]

Pass band [440 - 2000]
Figure 1.2 : Frequency parameters

Parameter Gain (decibels) Gain (linear)

Stop band gain -infinity 0

Stop band ripple -48 0.004

Pass band gain 0 1

Pass band ripple 0.4 0.023
Figure 1.3 : Gain parameters

 The stop band ripple corresponds to the minimum attenuation of the stopband,

which is -48 dB. The pass band ripple is the difference between the maximum and minimum

allowable gain. In this case, its value is given as 0.4 dB. The pass band deviation corresponds

to the deviation from the pass band gain (0 dB here). It can be calculated using the pass

band ripple with this formula:

Pass band ripple (db) = 20log(1+DEV) – 20log(1-DEV), where DEV is the pass band deviation.

The method of calculation of this deviation is further described in the explanation of the

MatLab script below.

2. Designing the FIR filter with MatLab

 MatLab will be used to determine the necessary coefficients of the FIR filter. The

Parks-McClelland algorithm will help the design of the FIR filter through the Matlab built-in

functions firpm and firpmod. The full MatLab script used is in appendix 1. The script will be

explained below.

% ~~~~~~~~~~~~~~~~ F U N C T I O N S ~~~~~~~~~~~~~~~~

% ~~~ db_2_gain function

db_2_gain = @(db_input) 10^(db_input/20);

 %Note: This is the definition of an anonymous function.

 %Note: This functions converts decibels into linear form.
 Figure 2.1: MatLab script, Functions part

 First of all, an anonymous function is defined in order to convert a gain in decibels

units to a linear gain. It takes db_input as its argument and returns the linear converted

value.

% ~~~~~~~~~~~~~~~ P A R A M E T E R S ~~~~~~~~~~~~~~~

% ~~~ Debug parameters ~~~

display_firpmod_dev = false;

display_firpmod = false;

% ~~~ Frequency parameters ~~~

Fsampling = 8000; %sampling frequency (C6713 sampling)

Fcutoff = [240 440 2000 2450]; %Cut off frequencies

 %Note: size of array must be 2*sizeof(amp_cutoff) - 2

 %Note: asymmetric transition frequencies gives the "bump"

% ~~~ Gain parameters ~~~

PB_gain = db_2_gain(0); %Pass band gain

SB_gain = 0; %Stop band gain

Acutoff = [SB_gain PB_gain SB_gain]; %Cut off amplitudes

% ~~~ Ripple parameters ~~~

PB_ripple=db_2_gain(0.4); %pass band ripple

SB_ripple=db_2_gain(-48); %stop band ripple

PB_dev=(PB_ripple - 1)/(PB_ripple + 1));

dev = [SB_ripple PB_dev SB_ripple]; %deviation
 %Note: size of array must be sizeof(Acutoff)

if (display_firpmod_dev == true)

 dev

end
 Figure 2.2: MatLab script, Parameters part

 All the parameters previously deduced from the conceptual drawing are inputted in

this section of the script. The debug parameters are used to display results for debugging

purposes. The frequency parameters include the sampling frequency of the C6713 DSK

board (8 KHz), as well as the cut off frequencies of the FIR filter. The gain parameters

contain the linear gains of the pass band and the stop bands. These two values are then

concatenated in the variable Acutoff for future use. The ripple parameters are the pass

band and stop band ripples. The pass band deviation PB_dev is then calculated from the

pass band ripple with PB_dev=(PB_ripple - 1)/(PB_ripple + 1)); where

PB_ripple=db_2_gain(0.4); . Lastly, the row vector dev is stored using the values inputted

and its content can be displayed if the variable display_firpmod_dev is set to true.

% ~~~~~~~~~~~~~ C A L C U L A T I O N S ~~~~~~~~~~~~~

% ~~~ Calculation of firpmord

[N,normFBEdges,FBAmplitudes,weights]=firpmord(Fcutoff,Acutoff,dev,Fsampling);

 %Note: N is the order of the filter

if (display_firpmod == true)

 N, normFBEdges, FBAmplitudes, weights

end

% ~~~ Calculation of firpm

b = firpm(N, normFBEdges, FBAmplitudes, weights);

 %Note: FIRcoefficients is a N+1 row vector
 Figure 2.3: MatLab script, Calculations part

 The parameters previously stored are now used in the calculations of the FIR filter’s

coefficients. The built-in function firpmod takes as arguments the cut off frequencies, the

cut off amplitudes (stop band and pass band associated gains), the deviation and the

sampling frequency. It produces the order of the filter N, the normalized frequency band

edges normFBEdges, the frequency band amplitudes FBAmplitudes, and the weights

corresponding to the FIR filter.

 Again, these 4 resulting variables can be displayed in the console if the debugging

parameter display_firpmod is set to true.

 The final calculation uses the built-in firpm function to calculate the FIR filter’s

coefficients from the results previously obtained. These are then stored in the N+1 row

vector denoted by b.

% ~~~~~~~~~~~~~~~~~ R E S U L T S ~~~~~~~~~~~~~~~~~~

freqz(b);

title('FIR filter designed to specifications')

save fir_coef.txt b -ASCII -DOUBLE -TABS;

%Note: In order to make the file fir_coef.txt readable

% by the C code, the tabulations separating each

% coefficient of the array of doubles b are replaced

% with ", " using Notepad++. Some other modifications

% are done as shown in the fir_coef.txt (appendices).
 Figure 2.4: MatLab script, Results part

 The last section of the script plots the magnitude and phase frequency responses

with the built-in function freqz and then save the FIR filter coefficients in the file fir_coef.txt

in the ASCII format. The plots obtained with MatLab are shown in figure 1.8 below.

 Figure 2.5: Magnitude and Phase frequency response obtained with the MatLab script

 As the X axis is the normalized frequency, note that 1 PI rad/sample corresponds to

the Nyquist rate of 4 KHz, so 0.5 PI rad/sample corresponds to a physical frequency of 2 KHz

for example. The magnitude stays under -48 dB in the stop bands and is at 0 dB in the pass

band as requested. The increase in magnitude in the second transition band is due to the

allowed ripple at this frequency range.

 The phase varies linearly in the pass band as shown in the second plot. Indeed, from

0.06 PI rad/sample to 0.56 PI rad/sample (or from 240 Hz to 2.24 KHz), the phase varies as a

straight line. Its negative derivative, also called the group delay, will then be constant.

From the second plot, the constant group delay can be calculated as:
- (0.1523 - 0.5)/(- 335.7 – (-2745)) = 0.3477 / 2409.3 = 1.4431e-4 = 0.14431 milliseconds.

As we wanted to design an FIR filter, the phase response is meant to be linear so this result

is as expected.

 There are 78 coefficients obtained are shown in the table below.

 Figure 2.6: FIR filter coefficients obtained with matLab script

 It can be seen and verified from this table that the generated coefficients are

symmetric. Indeed, the coefficients in the array b obey to the FIR filter relationship

b(n) = b(N-1-n), hence giving a linear phase frequency response. Moreover, the sum of all the

coefficients equals to zero and this has for result to block any DC component. The file

fir_coeff.txt is in appendix 2 and has been changed to be read by a C code.

3. FIR filter implementation

 As this implementation is based on the laboratory 3 codes, the interrupts happen

when a sample is read by the board, hence calling the ISR_AIC() function. The text file

fir_coeff.txt generated by the Matlab script is included in the project by adding the line

#include "fir_coef.txt" at the start of the intio.c file. The workspace hierarchy is as shown

in the figure 3.0.1 below.

 Figure 3.0.1: Project workspace hierarchy

3.1. First FIR filter implementation

The first implementation of the FIR filter is done by using a delay buffer combined with a

MAC loop. The full code intio.c is attached in appendix 3.

 A constant N is defined by #define N (sizeof(b)/sizeof(b[0])) and corresponds to

the order of the filter (78 here). It is used to declare the delay input buffer int x[N] and

limit the loops in all of our implementations.

 The function init_var() shown in the figure below sets all the values of the array x to

zero in order to avoid any miscalculations. It is called at the start of the main(). This is again

done in all the next implementations of the FIR filter.

/************************************* init_var() ************************************/

void init_var(void) /*MODIFICATION_01 - Initializes variables (array x to zero)*/

{

 memset(x, 0, sizeof(x));

}
 Figure 3.1.1: Function init_var()

 In this first implementation, the interrupt service routine ISR_AIC() is defined as in

figure 3.1.3 and the function non_circ_FIR() as in figure 3.1.4.

/************************** INTERRUPT SERVICE ROUTINE *******************************/

void ISR_AIC(void)

{

 int n;

 mono_write_16Bit(non_circ_FIR()); /*MODIFICATION_01 - Output filtered sample.*/

 /*MODIFICATION_01 - Move data along buffer from lower element to next higher*/

 for(n = N - 1; n > 0; n--)

 {

 x[n] = x[n - 1];

 }

 x[0] = mono_read_16Bit(); /*MODIFICATION_01 - Stores new sample in delay buffer*/

}
 Figure 3.1.2: Function ISR_AIC() called by interrupt

 The mono_write_16Bit() function writes the filtered sample to the output ports (as a

MONO signal). The delay in the input delay buffer is achieved with the for loop in N – 1

iterations. Please refer to the comments in the code for further explanations. Note that

“MODIFICATION_01” corresponds to the modifications done in the first implementation.

Hence, “MODIFICATION_02” will correspond to the second implementation for example.

/******************************* non_circ_FIR() ************************************/

double non_circ_FIR(void)

{

/*MODIFICATION_01 - Performs the FIR filtering, so the convolution between

the filter coefficients of b and the samples of the delay buffer x.

It uses indexes to move to the next element in x and b (01). */

 double sum = 0;

 int n;

 for(n = 0; n < N; n++) //note: for loops are 2 cycles faster than while loops.

 {

 sum += x[n] * b[n];

 }

 return sum;

}
 Figure 3.1.3: Function non_circ_FIR() called by ISR_AIC()

 This function performs the convolution between the input delay buffer x and the

coefficients b. This MAC operations are done in the for loop through N iterations.

 To test the correct operation of the implemented FIR filter, the following

configuration is used.

 Figure 3.1.4: Connection configuration for input and output ports of the DSK board

The following results are obtained at various frequencies.

Figure 3.1.5: Scope measurement of output of DSK board, at stop band frequency range (<240 Hz; > 2000 Hz)

Figure 3.1.6: Scope measurement of output of DSK board, at pass band frequency range (364 Hz)

Figure 3.1.7: Scope measurement of output of DSK board, at pass band frequency range (1293 Hz)

Figure 3.1.8: Scope measurement of output of DSK board, at second transition band frequency range (2122 Hz)

Figure 3.1.9: Scope measurement of output of DSK board, at stop band frequency range (2306 Hz)

 The FIR filter implemented hence acts as it was expected to. The signal is absent in

the stop bands and is the same signal in the pass band, between 240 Hz and 2 KHz.

However, the amplitude of the output signal is 4 times reduced in comparison with the

input amplitude. This is due to the two potential divider at each input port of the DSK

board. These are shown in the figure 3.6 below.

 Figure 3.1.10: Potential dividers at the input ports of the DSK board

 To evaluate the performance of the code, the profiling clock method will be used.

First, the clock has to be enabled as shown below:

 Figure 3.1.11: Menu to enable the clock profiling method

 Two breakpoints are inserted so that they surround the interrupt routine (see figure

3.1.7). This will allow to reset the clock to zero at the beginning of the interrupt routine and

to measure how many cycles are consumed by the entire interrupt routine. This method is

used for all the future implementations of the FIR filter.

 Figure 3.1.12: Breakpoints position to measure the number of cycles

 There are 4 different compiler optimisation levels which can be accessed from

Project->Properties->C/C++ build->C6000 compiler->Basic options but only the –o0 and

–o2 optimisation options will be used. The –o0 optimisation level makes the optimisation

occur only at a single statement level, while the –o2 option optimizes at the function level.

The number of cycles are obtained without and with these compiler optimisations. These

cycles measurements will be with these optimisations and breakpoints for all the future

implementations of the FIR filter.

 The following results are obtained for our first implementation.

Optimization None -o0 -o2

Measurement 1 5211 4977 1109

Measurement 2 5211 4977 1109

Measurement 3 5211 4977 1108

Measurement 4 5210 4977 1108

Best case 5210 4977 1108

 Figure 3.1.13: Cycles measured for different optimisation levels (implementation 1)

 This shows that the optimisation –o2 is the best with a best case of 1108 cycles used

by the interrupt routine.

3.2. Second FIR filter implementation: only one for loop

 The second implementation of the FIR filter is based on the first implementation

described above. The main difference is that the MAC operations needed for the

convolution and the delay operations are now done in only one for loop instead of two. The

full code for this implementation is in appendix 4.

 The functions ISR_AIC() and non_circ_FIR() are shown in the figure 3.2.1.

/************************** INTERRUPT SERVICE ROUTINE *******************************/

void ISR_AIC(void)

{

 mono_write_16Bit(non_circ_FIR()); /*MODIFICATION_01 - Output filtered sample.*/

 x[0] = mono_read_16Bit(); /*MODIFICATION_01 - Stores new sample in delay buffer*/

}

/******************************* non_circ_FIR() ************************************/

double non_circ_FIR(void)

{

/*MODIFICATION_01 - Performs the FIR filtering so the convolution between

the filter coefficients b and the samples in the delay buffer x.

It uses indexes to move to the next element in x and b (01). */

/*MODIFICATION_02 - The shifting is done in the MAC protocol.

 Only one for loop is needed now. */

 int n;

 double sum = x[0] * b[0];

 for(n = N-1; n > 0; n--)

 {

 sum += x[n] * b[n];

 x[n] = x[n - 1]; /*MODIFICATION_02 - Shifting in MAC protocol.*/

 }

 return sum;

}
 Figure 3.2.1: Functions ISR_AIC() and non_circ_FIR()

 The delay and MAC operations are now executed in one for loop in the

non_circ_FIR() function. This should improve the speed of the interrupt routine.

 The new implementation has been tested using the signal generator at various

frequencies and satisfies the requirements (same waveforms as for the first

implementation). The following results were obtained concerning the cycles used by the

interrupt routine.

Optimization None -o0 -o2

Measurement 1 4403 4327 580

Measurement 2 4403 4326 581

Measurement 3 4404 4326 581

Measurement 4 4403 4326 580

Best case 4403 4326 580

 Figure 3.2.2: Cycles measured for different optimisation levels (implementation 2)

 This table clearly shows the gain in speed between the two implementations. 807

cycles were gained without optimisation, 651 with –o0 and 528 with the –o2 optimisation

level. Also, the reduction in the differences of cycles between the two first implementations

demonstrates the ability of the –o0 and –o2 compiler optimizations.

3.3. Third FIR filter implementation: using pointers

 A third implementation was made using pointers as we thought using them would

increase the speed of the interrupt routine. Indeed, the second implementation used index

accessing in a for loop. Each of these loops contains 2 load operations: one for the address

of the start of the array and one for the index value n. On the other hand, by using pointers,

only loading the start address of the array is needed.

The only modifications (signalled by MODIFICATION_03) are made in the non_circ_FIR()

function from the second implementation. This function is shown in figure 3.3.1 and the full

code for this third implementation is shown in appendix 5.

/******************************* non_circ_FIR() ************************************/

double non_circ_FIR(void)

{

/*MODIFICATION_03 - Performs the FIR filtering so the convolution between

the filter coefficients b and the samples in the delay buffer x.

It uses pointers to move to the next element in x and b (02). */

 int n;

 double sum;

 int *xp = x; /*MODIFICATION_03 - Pointer to first element of x*/

 double *bp = b; /*MODIFICATION_03 - Pointer to first element of b*/

 sum = (*xp++) * (*bp++); /*MODIFICATION_03 - MAC using pointers*/

 for(n = N - 1; n > 0; n--)

 {

 sum += (*xp++) * (*bp++); /*MODIFICATION_03 - MAC using pointers*/

 x[n] = x[n - 1]; /*MODIFICATION_01 - Move data along buffer from lower element

to next higher*/

 }

 return sum;

}
 Figure 3.3.1: Functions non_circ_FIR() using pointers instead of index accessing

 The new implementation has been tested using the signal generator at various

frequencies and satisfies the specifications. The following results were obtained concerning

the cycles used by the interrupt routine.

Optimization None -o0 -o2

Measurement 1 5108 4722 745

Measurement 2 5107 4722 745

Measurement 3 5107 4722 744

Measurement 4 5107 4722 744

Best case 5107 4722 744

Figure 3.3.2: Cycles measured for different optimisation levels (implementation 3, using pointers)

 The performance of the pointer implementation is disappointing as it takes way more

cycles than the second implementation. Even without optimization, the number of clock

cycles consumed by the interrupt routine is higher than the index accessing

implementation. Moreover, a higher number of clock cycles for the index accessing loop at

full optimization is expected since the compiler will optimize best the form of convolution it

recognizes best, such as the index accessing loops.

 For now, the second implementation is the best implementation so far.

3.4. Fourth FIR filter implementation: Circular buffer

 In order to decrease furthermore the number of cycles needed by the interrupt

service routine, a circular buffer is implemented to avoid the copy of a large set of data for

each new sample. Indeed, in the previous implementations, data was moved around to

delay the input buffer each time a new sample was received. This new algorithm updates a

pointer to the newest element in the input buffer array. The full code is in appendix 6.

The ISR_AIC() function is slightly modified as described below.
/************************** INTERRUPT SERVICE ROUTINE *******************************/

void ISR_AIC(void)

{

 mono_write_16Bit(circ_FIR(mono_read_16Bit()));

 /*MODIFICATION_01 - Output filtered sample.*/

}
 Figure 3.4.1: Functions ISR_AIC()

The circ_FIR() function is shown in the figure 3.4.2 below.

/********************************* circ_FIR() ***************************************/

double circ_FIR(double sample_in)

{

/*MODIFICATION_04 - Performs the FIR filtering.

This function uses a circular buffer in order to execute the convolution. (04)*/

 double sum = 0;

 double *bp = b; /*MODIFICATION_04 - Coefficient variable pointer.

 This pointer is first set to the first element of b.*/

 int *x_start = x; /*MODIFICATION_04 - Input buffer constant pointer.

 This pointer points to the first element of x.*/

 double *bp_end = b + N; /*MODIFICATION_04 - Coefficient constant pointer.

 This pointer points to the last element of b.*/

 int *xp = x_start + offset;

/*MODIFICATION_04 - Input buffer variable pointer. This pointer is first set to the

'offset'th element of x.*/

 *xp = sample_in; /*MODIFICATION_04 - Stores the new sample at the address of xp.*/

 while(xp >= x_start)

 {

 sum += (*xp--) * (*bp++);

 /*MODIFICATION_04 - Shifts the address of the element of the input buffer

 from the 'offset' address to the first element's address (x_start).

 It shifts at the same time the address of the element of the coefficients

 from the first element's address to the 'offset' address.*/

 }

 xp = x_start + N - 1;

/*MODIFICATION_04 -Reinitialises xp to the end of the array.*/

 while(bp < bp_end)

 {

 sum += (*xp--) * (*bp++);

 /*MODIFICATION_04 - Shifts the address of the element of the coefficients

 from the 'offset' address to the last element's address (bp_end).

 It shifts at the same time the address of the element of the input buffer

 from the last (bp_end) element's address to the 'bp_end - offset' address.*/

 }

 offset--; /*MODIFICATION_04 - Decrements the offset*/

 if(offset < 0)

 {

 offset = N - 1;

/*MODIFICATION_04 - Restores the offset to N-1 when out of bound.*/

 }

 return sum;

}
 Figure 3.4.2: Functions circ_FIR() using pointers

The function contains 4 pointers and each of their functions are described in the comments

(MODIFICATION_04). All the working of this circular buffer algorithm is also described in the

comments of the code above.

 The variable offset is defined as a global variable by int offset = N - 1; and is

decremented each time the interrupt service routine is called. It is also reinitialised to N – 1

whenever it is out of bound (negative). Because of this offset decrement, each time the ISR

is called, the number of loops in the first while loop will decrease as the number of loops in

the second while loop will increase.

 The new implementation has been tested using the signal generator at various

frequencies and satisfies the specifications. The following results were obtained concerning

the cycles used by the interrupt routine.

Optimization None -o0 -o2

Measurement 1 3944 3945 806

Measurement 2 3942 3942 805

Measurement 3 3940 3940 805

Measurement 4 3939 3936 806

Best case 3939 3936 805

Figure 3.4.3: Cycles measured for different optimisation levels (implementation 4, using circular buffers)

 Without optimization, this implementation is slightly quicker than the second

implementation (non circular buffer with index accessing). However, with the optimisations

applied, this code consumes more cycles in the ISR in comparison with the second

implementation.

 One last implementation was done by replacing pointers by index accessing in the

circular buffer algorithm. The modifications are only done in the circ_FIR() function as

shown below:

/********************************* circ_FIR() ***************************************/

double circ_FIR(double sample_in)

{

/*MODIFICATION_04 - Performs the FIR filtering.

This function uses a circular buffer in order to execute the convolution. (04)*/

 double sum = 0;

 int n = 0;

 x[offset] = sample_in;

/*MODIFICATION_05 - Stores the new sample at the address of xp.*/

 for(n = 0; n <= offset; n++)

 {

 sum += x[offset - n] * b[n];

 }

 for(n = 0; n < N - offset; n++)

 {

 sum += x[N - 1 - n] * b[offset + n];

 }

 offset--; /*MODIFICATION_04 - Decrements the offset*/

 if(offset < 0)

 {

 offset = N - 1; /*MODIFICATION_04 - Restores the offset to N-1 when out of

bound.*/

 }

 return sum;

}
 Figure 3.4.4: Functions circ_FIR() using index accessing

 This last implementation of the circular buffer gave us the right signals on the

oscilloscope and better results concerning the speed of the ISR.

Optimization None -o0 -o2

Measurement 1 3944 3945 787

Measurement 2 3942 3942 788

Measurement 3 3940 3940 787

Measurement 4 3939 3936 787

Best case 3939 3936 787

Figure 3.4.5: Cycles measured for different optimisation levels (implementation 5, using circular buffers and indexes)

4. Spectrum analyser and measurement of frequency response

 The frequency response of our designed FIR filter (using implementation 2) is

measured with the APX 515 audio analyser and the apx500 software. The results obtained

for the magnitude and the phase match to a certain extent the expected results from the

MatLab simulation.

 The magnitude response of the FIR filter is shown in the figure 4.1 below.

 Figure 4.1: Magnitude response measured with APX 500

 The magnitude response in the pass band frequency range is not 0 dB as expected

but around -12.5 dB. This value corresponds to a linear gain of approximately 0.25. This

corresponds to the 0.25 gain factor due to the potential dividers at the inputs of the DSK

board as described earlier in the report.

 Using the Matlab command zplane(b), where b is the coefficients of the FIR filter, a

zero plane of the filter has been plotted as shown in the figure 4.2.

 Figure 4.2: MatLab zero map of the FIR filter generated

 The PI/2 axis represents half of the Nyquist rate, 2 KHz. Most of the zeroes of the

filter are located under 2 KHz which is the highest corner frequency of the FIR filter.

These zeroes on the unit circle will bring our gain to 0 dB for frequencies lower than 2 KHz.

The zeroes placed to the right side of the PI/2 axis correspond to the ripple observable in

the stop band. The ripple in the pass band is due to the position of the zeroes which are not

exactly placed on the unit circle.

 In order to show the phase is linear as expected, the group delay is observed using

the APX 515. The following figure is obtained.

 Figure 4.3: Group delay response measured with APX 500

 As the group delay is constant between 230 Hz and 2200 Hz, the phase of the

designed FIR filter is linear in the pass band as it was described in MatLab.

Appendices

Appendix 1: MatLab script to generate FIR filter coefficients

FIRdesign.m
%% ************* MATLAB FIR design script ************* %%

%% Authors: Alexandra Rouhana and Quentin McGaw %%

%% Date: February 2015 %%

% ~~~~~~~~~~~~~~~~ F U N C T I O N S ~~~~~~~~~~~~~~~~

% ~~~ db_2_gain function

db_2_gain = @(db_input) 10^(db_input/20);

 %Note: This is the definition of an anonymous function.

 %Note: This functions converts decibels into linear form.

% ~~~~~~~~~~~~~~~ P A R A M E T E R S ~~~~~~~~~~~~~~~

% ~~~ Debug parameters ~~~

display_firpmod_dev = false;

display_firpmod = false;

% ~~~ Frequency parameters ~~~

Fsampling = 8000; %sampling frequency (C6713 sampling)

Fcutoff = [240 440 2000 2450]; %Cut off frequencies

 %Note: size of array must be 2*sizeof(amp_cutoff) - 2

 %Note: asymmetric transition frequencies gives the "bump"

% ~~~ Gain parameters ~~~

PB_gain = db_2_gain(0); %Pass band gain

SB_gain = 0; %Stop band gain

Acutoff = [SB_gain PB_gain SB_gain]; %Cut off amplitudes

% ~~~ Ripple parameters ~~~

PB_ripple=db_2_gain(0.4); %pass band ripple

SB_ripple=db_2_gain(-48); %stop band ripple

PB_dev=(PB_ripple - 1)/(PB_ripple + 1));

dev = [SB_ripple PB_dev SB_ripple]; %deviation

 %Note: size of array must be sizeof(Acutoff)

if (display_firpmod_dev == true)

 dev

end

% ~~~~~~~~~~~~~ C A L C U L A T I O N S ~~~~~~~~~~~~~

% ~~~ Calculation of firpmord

[N,normFBEdges,FBAmplitudes,weights]=firpmord(Fcutoff,Acutoff,dev,Fsampling);

 %Note: N is the order of the filter

if (display_firpmod == true)

 N, normFBEdges, FBAmplitudes, weights

end

% ~~~ Calculation of firpm

b = firpm(N, normFBEdges, FBAmplitudes, weights);

 %Note: FIRcoefficients is a N+1 row vector

% ~~~~~~~~~~~~~~~~~ R E S U L T S ~~~~~~~~~~~~~~~~~~

freqz(b);

title('FIR filter designed to specifications')

save fir_coef.txt b -ASCII -DOUBLE -TABS;

%Note: In order to make the file fir_coef.txt readable

% by the C code, the tabulations separating each

% coefficient of the array of doubles b are replaced

% with ", " using Notepad++. Some other modifications

% are done as shown in the fir_coef.txt (appendices).

Appendix 2: fir_coeff.txt file containing coefficients generated by FIRdesign.m script

fir_coef.txt
double b[] = {2.1541345781171156e-03, 9.8005357896107110e-03, 5.4371515578831835e-03, -

5.1142494713767306e-03, -1.5135069206497014e-03, 8.1626176755367728e-03, -

2.2532582955269659e-03, -1.3880259340097808e-02, 2.6476296509414955e-04,

7.0485156237517404e-03, -1.5478437646509018e-02, -1.8217657715374400e-02,

8.9170579328378512e-03, 3.4387876650046100e-03, -2.4949016057598996e-02, -

5.8739698182686557e-03, 2.5269528500471299e-02, -7.9215383201721758e-04, -

2.0480143786109503e-02, 2.2652567579213391e-02, 3.7662528152726152e-02, -

8.4580293721033713e-03, -4.6883367511284715e-03, 4.7525251126211504e-02,

2.6319530020987809e-02, -2.6617811856352806e-02, 7.4063917499571225e-03,

4.3039393273714685e-02, -2.1031786015934469e-02, -5.6468863518531656e-02,

6.3712774691533393e-03, -1.5339983444065050e-04, -9.7621445849171984e-02, -

7.9149808187196066e-02, 1.1569930906362279e-02, -7.9355477758959903e-02, -

2.0852326113273578e-01, 1.1031540970205075e-02, 4.0837539878781343e-01,

4.0837539878781343e-01, 1.1031540970205075e-02, -2.0852326113273578e-01, -

7.9355477758959903e-02, 1.1569930906362279e-02, -7.9149808187196066e-02, -

9.7621445849171984e-02, -1.5339983444065050e-04, 6.3712774691533393e-03, -

5.6468863518531656e-02, -2.1031786015934469e-02, 4.3039393273714685e-02,

7.4063917499571225e-03, -2.6617811856352806e-02, 2.6319530020987809e-02,

4.7525251126211504e-02, -4.6883367511284715e-03, -8.4580293721033713e-03,

3.7662528152726152e-02, 2.2652567579213391e-02, -2.0480143786109503e-02, -

7.9215383201721758e-04, 2.5269528500471299e-02, -5.8739698182686557e-03, -

2.4949016057598996e-02, 3.4387876650046100e-03, 8.9170579328378512e-03, -

1.8217657715374400e-02, -1.5478437646509018e-02, 7.0485156237517404e-03,

2.6476296509414955e-04, -1.3880259340097808e-02, -2.2532582955269659e-03,

8.1626176755367728e-03, -1.5135069206497014e-03, -5.1142494713767306e-03,

5.4371515578831835e-03, 9.8005357896107110e-03, 2.1541345781171156e-03};

Appendix 3: First implementation of FIR filter (intio.c)

Implementation1_noncircular_index.c

/***

 , DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

 , , IMPERIAL COLLEGE LONDON

 , EE 3.19: Real Time Digital Signal Processing

 , Dr Paul Mitcheson and Daniel Harvey

 , , LAB 4: Real-time Implementation of FIR Filters

 , ********* I N T I O. C **********

 Implementation of FIR filter using indexes to execute the convolution function.

 MODIFICATIONS made by Quentin McGaw and Alexandra Rouhana, during February 2015

 MODIFICATION_01 correspond to this implementation.

 Updated for use on 6713 DSK by Danny Harvey: May-Aug 2006

 Updated for CCS V4 Sept 10

 **/

/*

 * You should modify the code so that interrupts are used to service the

 * audio port.

 */

/**************************** Pre-processor statements ******************************/

#include <stdlib.h> //Included so program can make use of DSP/BIOS configuration tool.

#include "dsp_bios_cfg.h"

#include "dsk6713.h"

#include "dsk6713_aic23.h"

/* The file dsk6713.h must be included in every program that uses the BSL. This

 example also includes dsk6713_aic23.h because it uses the

 AIC23 codec module (audio interface). */

#include <math.h> //math library (trigonometric functions)

//Some functions to help with writing/reading the audio ports when using interrupts.

#include <helper_functions_ISR.h>

typedef int bool; //Defines boolean type for debugging

#define true 1

#define false 0

#include "fir_coef.txt" /*MODIFICATION_01 - Includes the array of doubles b[].

 It represents the filter coefficients.*/

#include <string.h> /*MODIFICATION_01 - Library to use the memset function.*/

#define N (sizeof(b)/sizeof(b[0]))

/*MODIFICATION_01 - N is the order of the filter (number of coefficients).

 This is found by calculating the number of elements in the array of coefficients.

 In our case, N is set to 78. */

/******************************* Global declarations ********************************/

/* Audio port configuration settings: these values set registers in the AIC23 audio

 interface to configure it. See TI doc SLWS106D 3-3 to 3-10 for more info. */

DSK6713_AIC23_Config Config = { \

 /**/

 /* REGISTER, FUNCTION , SETTINGS */

 /**/\

 0x0017, /* 0 LEFTINVOL Left line input channel volume 0dB */\

 0x0017, /* 1 RIGHTINVOL Right line input channel volume 0dB */\

 0x01f9, /* 2 LEFTHPVOL Left channel headphone volume 0dB */\

 0x01f9, /* 3 RIGHTHPVOL Right channel headphone volume 0dB */\

 0x0011, /* 4 ANAPATH Analog audio path control DAC on, Mic boost 20dB*/\

 0x0000, /* 5 DIGPATH Digital audio path control All Filters off */\

 0x0000, /* 6 DPOWERDOWN Power down control All Hardware on */\

 0x0043, /* 7 DIGIF Digital audio interface format 16 bit */\

 0x008d, /* 8 SAMPLERATE Sample rate control 8 KHZ */\

 0x0001 /* 9 DIGACT Digital interface activation On */\

 /**/

};

// Codec handle:- a variable used to identify audio interface

DSK6713_AIC23_CodecHandle H_Codec;

int x[N]; /*MODIFICATION_01 - Defines a 78 elements input delay buffer*/

 /******************************* Function prototypes ********************************/

void init_hardware(void);

void init_var(void); /*MODIFICATION_01 - Initialises x[N] to zero using memset*/

void init_HWI(void);

void ISR_AIC(void); //Interrupt function

double non_circ_FIR(void); /*MODIFICATION_01 - Function called by Interrupt function.

 It performs the filtering of the input sample.*/

/********************************** Main routine ************************************/

void main()

{

 init_hardware(); //initialize board and the audio port

 init_var(); /*MODIFICATION_01 - Function initializing variables*/

 init_HWI(); //initialize hardware interrupts

 while(1){}; //loop indefinitely, waiting for interrupts

}

/********************************** init_hardware() **********************************/

void init_hardware()

{

 // Initialize the board support library, must be called first

 DSK6713_init();

 // Start the AIC23 codec using the settings defined above in config

 H_Codec = DSK6713_AIC23_openCodec(0, &Config);

 /* Function below sets the number of bits in word used by MSBSP (serial port) for

 receives from AIC23 (audio port). We are using a 32 bit packet containing two

 16 bit numbers hence 32BIT is set for receive */

 MCBSP_FSETS(RCR1, RWDLEN1, 32BIT);

 /* Configures interrupt to activate on each consecutive available 32 bits

 from Audio port hence an interrupt is generated for each L & R sample pair */

 MCBSP_FSETS(SPCR1, RINTM, FRM);

 /* These commands do the same thing as above but applied to data transfers to

 the audio port */

 MCBSP_FSETS(XCR1, XWDLEN1, 32BIT);

 MCBSP_FSETS(SPCR1, XINTM, FRM);

}

/************************************* init_var() ************************************/

void init_var(void) /*MODIFICATION_01 - Initializes variables (array x to zero)*/

{

 memset(x, 0, sizeof(x));

}

/********************************** init_HWI() **************************************/

void init_HWI(void)

{

 IRQ_globalDisable(); // Globally disables interrupt4

 IRQ_nmiEnable(); // Enables the NMI interrupt (used by the debugger)

 IRQ_map(IRQ_EVT_RINT1,4); // Maps an event to a physical interrupt

 IRQ_enable(IRQ_EVT_RINT1); // Enables the event

 IRQ_globalEnable(); // Globally enables interrupts

}

/************************** INTERRUPT SERVICE ROUTINE *******************************/

void ISR_AIC(void)

{

 int n;

 mono_write_16Bit(non_circ_FIR()); /*MODIFICATION_01 - Output filtered sample.*/

 /*MODIFICATION_01 - Move data along buffer from lower element to next higher*/

 for(n = N - 1; n > 0; n--)

 {

 x[n] = x[n - 1];

 }

 x[0] = mono_read_16Bit(); /*MODIFICATION_01 - Stores new sample in delay buffer*/

}

/******************************* non_circ_FIR() ************************************/

double non_circ_FIR(void)

{

/*MODIFICATION_01 - Performs the FIR filtering, so the convolution between

the filter coefficients of b and the samples of the delay buffer x.

It uses indexes to move to the next element in x and b (01). */

 double sum = 0;

 int n;

 for(n = 0; n < N; n++) //note: for loops are 2 cycles faster than while loops.

 {

 sum += x[n] * b[n];

 }

 return sum;

}

Appendix 4: Second implementation of FIR filter (intio.c) (only one for loop)

Implementation2_noncircular_index_oneForLoop.c

/***

 , DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

 , , IMPERIAL COLLEGE LONDON

 , EE 3.19: Real Time Digital Signal Processing

 , Dr Paul Mitcheson and Daniel Harvey

 , , LAB 4: Real-time Implementation of FIR Filters

 , ********* I N T I O. C **********

 Implementation of FIR filter using indexes to execute the convolution function.

 MODIFICATIONS made by Quentin McGaw and Alexandra Rouhana, during February 2015

 MODIFICATION_02 correspond to this implementation.

 Updated for use on 6713 DSK by Danny Harvey: May-Aug 2006

 Updated for CCS V4 Sept 10

 **/

/*

 * You should modify the code so that interrupts are used to service the

 * audio port.

 */

/**************************** Pre-processor statements ******************************/

#include <stdlib.h> //Included so program can make use of DSP/BIOS configuration tool.

#include "dsp_bios_cfg.h"

#include "dsk6713.h"

#include "dsk6713_aic23.h"

/* The file dsk6713.h must be included in every program that uses the BSL. This

 example also includes dsk6713_aic23.h because it uses the

 AIC23 codec module (audio interface). */

#include <math.h> //math library (trigonometric functions)

//Some functions to help with writing/reading the audio ports when using interrupts.

#include <helper_functions_ISR.h>

typedef int bool; //Defines boolean type for debugging

#define true 1

#define false 0

#include "fir_coef.txt" /*MODIFICATION_01 - Includes the array of doubles b[].

 It represents the filter coefficients.*/

#include <string.h> /*MODIFICATION_01 - Library to use the memset function.*/

#define N (sizeof(b)/sizeof(b[0]))

/*MODIFICATION_01 - N is the order of the filter (number of coefficients).

 This is found by calculating the number of elements in the array of coefficients.

 In our case, N is set to 78. */

/******************************* Global declarations ********************************/

/* Audio port configuration settings: these values set registers in the AIC23 audio

 interface to configure it. See TI doc SLWS106D 3-3 to 3-10 for more info. */

DSK6713_AIC23_Config Config = { \

 /**/

 /* REGISTER, FUNCTION , SETTINGS */

 /**/\

 0x0017, /* 0 LEFTINVOL Left line input channel volume 0dB */\

 0x0017, /* 1 RIGHTINVOL Right line input channel volume 0dB */\

 0x01f9, /* 2 LEFTHPVOL Left channel headphone volume 0dB */\

 0x01f9, /* 3 RIGHTHPVOL Right channel headphone volume 0dB */\

 0x0011, /* 4 ANAPATH Analog audio path control DAC on, Mic boost 20dB*/\

 0x0000, /* 5 DIGPATH Digital audio path control All Filters off */\

 0x0000, /* 6 DPOWERDOWN Power down control All Hardware on */\

 0x0043, /* 7 DIGIF Digital audio interface format 16 bit */\

 0x008d, /* 8 SAMPLERATE Sample rate control 8 KHZ */\

 0x0001 /* 9 DIGACT Digital interface activation On */\

 /**/

};

// Codec handle:- a variable used to identify audio interface

DSK6713_AIC23_CodecHandle H_Codec;

int x[N]; /*MODIFICATION_01 - Defines a 78 elements input delay buffer*/

 /******************************* Function prototypes ********************************/

void init_hardware(void);

void init_var(void); /*MODIFICATION_01 - Initialises x[N] to zero using memset*/

void init_HWI(void);

void ISR_AIC(void); //Interrupt function

double non_circ_FIR(void); /*MODIFICATION_01 - Function called by Interrupt function.

 It performs the filtering of the input sample.*/

/********************************** Main routine ************************************/

void main()

{

 init_hardware(); //initialize board and the audio port

 init_var(); /*MODIFICATION_01 - Function initializing variables*/

 init_HWI(); //initialize hardware interrupts

 while(1){}; //loop indefinitely, waiting for interrupts

}

/********************************** init_hardware() **********************************/

void init_hardware()

{

 // Initialize the board support library, must be called first

 DSK6713_init();

 // Start the AIC23 codec using the settings defined above in config

 H_Codec = DSK6713_AIC23_openCodec(0, &Config);

 /* Function below sets the number of bits in word used by MSBSP (serial port) for

 receives from AIC23 (audio port). We are using a 32 bit packet containing two

 16 bit numbers hence 32BIT is set for receive */

 MCBSP_FSETS(RCR1, RWDLEN1, 32BIT);

 /* Configures interrupt to activate on each consecutive available 32 bits

 from Audio port hence an interrupt is generated for each L & R sample pair */

 MCBSP_FSETS(SPCR1, RINTM, FRM);

 /* These commands do the same thing as above but applied to data transfers to

 the audio port */

 MCBSP_FSETS(XCR1, XWDLEN1, 32BIT);

 MCBSP_FSETS(SPCR1, XINTM, FRM);

}

/************************************* init_var() ************************************/

void init_var(void) /*MODIFICATION_01 - Initializes variables (array x to zero)*/

{

 memset(x, 0, sizeof(x));

}

/********************************** init_HWI() **************************************/

void init_HWI(void)

{

 IRQ_globalDisable(); // Globally disables interrupt4

 IRQ_nmiEnable(); // Enables the NMI interrupt (used by the debugger)

 IRQ_map(IRQ_EVT_RINT1,4); // Maps an event to a physical interrupt

 IRQ_enable(IRQ_EVT_RINT1); // Enables the event

 IRQ_globalEnable(); // Globally enables interrupts

}

/************************** INTERRUPT SERVICE ROUTINE *******************************/

void ISR_AIC(void)

{

 mono_write_16Bit(non_circ_FIR()); /*MODIFICATION_01 - Output filtered sample.*/

 x[0] = mono_read_16Bit(); /*MODIFICATION_01 - Stores new sample in delay buffer*/

}

/******************************* non_circ_FIR() ************************************/

double non_circ_FIR(void)

{

/*MODIFICATION_01 - Performs the FIR filtering so the convolution between

the filter coefficients b and the samples in the delay buffer x.

It uses indexes to move to the next element in x and b (01). */

/*MODIFICATION_02 - The shifting is done in the MAC protocol.

 Only one for loop is needed now. */

 int n;

 double sum = x[0] * b[0];

 for(n = N-1; n > 0; n--)

 {

 sum += x[n] * b[n];

 x[n] = x[n - 1]; /*MODIFICATION_02 - Shifting in MAC protocol.*/

 }

 return sum;

}

Appendix 5: Third implementation of FIR filter (intio.c) (using pointers)

Implementation3_noncircular_pointers.c

/***

 , DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

 , , IMPERIAL COLLEGE LONDON

 , EE 3.19: Real Time Digital Signal Processing

 , Dr Paul Mitcheson and Daniel Harvey

 , , LAB 4: Real-time Implementation of FIR Filters

 , ********* I N T I O. C **********

 Implementation of FIR filter using indexes to execute the convolution function.

 MODIFICATIONS made by Quentin McGaw and Alexandra Rouhana, during February 2015

 MODIFICATION_03 correspond to this implementation.

 Updated for use on 6713 DSK by Danny Harvey: May-Aug 2006

 Updated for CCS V4 Sept 10

 **/

/*

 * You should modify the code so that interrupts are used to service the

 * audio port.

 */

/**************************** Pre-processor statements ******************************/

#include <stdlib.h> //Included so program can make use of DSP/BIOS configuration tool.

#include "dsp_bios_cfg.h"

#include "dsk6713.h"

#include "dsk6713_aic23.h"

/* The file dsk6713.h must be included in every program that uses the BSL. This

 example also includes dsk6713_aic23.h because it uses the

 AIC23 codec module (audio interface). */

#include <math.h> //math library (trigonometric functions)

//Some functions to help with writing/reading the audio ports when using interrupts.

#include <helper_functions_ISR.h>

typedef int bool; //Defines boolean type for debugging

#define true 1

#define false 0

#include "fir_coef.txt" /*MODIFICATION_01 - Includes the array of doubles b[].

 It represents the filter coefficients.*/

#include <string.h> /*MODIFICATION_01 - Library to use the memset function.*/

#define N (sizeof(b)/sizeof(b[0]))

/*MODIFICATION_01 - N is the order of the filter (number of coefficients).

 This is found by calculating the number of elements in the array of coefficients.

 In our case, N is set to 78. */

/******************************* Global declarations ********************************/

/* Audio port configuration settings: these values set registers in the AIC23 audio

 interface to configure it. See TI doc SLWS106D 3-3 to 3-10 for more info. */

DSK6713_AIC23_Config Config = { \

 /**/

 /* REGISTER, FUNCTION , SETTINGS */

 /**/\

 0x0017, /* 0 LEFTINVOL Left line input channel volume 0dB */\

 0x0017, /* 1 RIGHTINVOL Right line input channel volume 0dB */\

 0x01f9, /* 2 LEFTHPVOL Left channel headphone volume 0dB */\

 0x01f9, /* 3 RIGHTHPVOL Right channel headphone volume 0dB */\

 0x0011, /* 4 ANAPATH Analog audio path control DAC on, Mic boost 20dB*/\

 0x0000, /* 5 DIGPATH Digital audio path control All Filters off */\

 0x0000, /* 6 DPOWERDOWN Power down control All Hardware on */\

 0x0043, /* 7 DIGIF Digital audio interface format 16 bit */\

 0x008d, /* 8 SAMPLERATE Sample rate control 8 KHZ */\

 0x0001 /* 9 DIGACT Digital interface activation On */\

 /**/

};

// Codec handle:- a variable used to identify audio interface

DSK6713_AIC23_CodecHandle H_Codec;

int x[N]; /*MODIFICATION_01 - Defines a 78 elements input delay buffer*/

 /******************************* Function prototypes ********************************/

void init_hardware(void);

void init_var(void); /*MODIFICATION_01 - Initialises x[N] to zero using memset*/

void init_HWI(void);

void ISR_AIC(void); //Interrupt function

double non_circ_FIR(void); /*MODIFICATION_01 - Function called by Interrupt function.

 It performs the filtering of the input sample.*/

/********************************** Main routine ************************************/

void main()

{

 init_hardware(); //initialize board and the audio port

 init_var(); /*MODIFICATION_01 - Function initializing variables*/

 init_HWI(); //initialize hardware interrupts

 while(1){}; //loop indefinitely, waiting for interrupts

}

/********************************** init_hardware() **********************************/

void init_hardware()

{

 // Initialize the board support library, must be called first

 DSK6713_init();

 // Start the AIC23 codec using the settings defined above in config

 H_Codec = DSK6713_AIC23_openCodec(0, &Config);

 /* Function below sets the number of bits in word used by MSBSP (serial port) for

 receives from AIC23 (audio port). We are using a 32 bit packet containing two

 16 bit numbers hence 32BIT is set for receive */

 MCBSP_FSETS(RCR1, RWDLEN1, 32BIT);

 /* Configures interrupt to activate on each consecutive available 32 bits

 from Audio port hence an interrupt is generated for each L & R sample pair */

 MCBSP_FSETS(SPCR1, RINTM, FRM);

 /* These commands do the same thing as above but applied to data transfers to

 the audio port */

 MCBSP_FSETS(XCR1, XWDLEN1, 32BIT);

 MCBSP_FSETS(SPCR1, XINTM, FRM);

}

/************************************* init_var() ************************************/

void init_var(void) /*MODIFICATION_01 - Initializes variables (array x to zero)*/

{

 memset(x, 0, sizeof(x));

}

/********************************** init_HWI() **************************************/

void init_HWI(void)

{

 IRQ_globalDisable(); // Globally disables interrupt4

 IRQ_nmiEnable(); // Enables the NMI interrupt (used by the debugger)

 IRQ_map(IRQ_EVT_RINT1,4); // Maps an event to a physical interrupt

 IRQ_enable(IRQ_EVT_RINT1); // Enables the event

 IRQ_globalEnable(); // Globally enables interrupts

}

/************************** INTERRUPT SERVICE ROUTINE *******************************/

void ISR_AIC(void)

{

 mono_write_16Bit(non_circ_FIR()); /*MODIFICATION_01 - Output filtered sample.*/

 x[0] = mono_read_16Bit(); /*MODIFICATION_01 - Stores new sample in delay buffer*/

}

/******************************* non_circ_FIR() ************************************/

double non_circ_FIR(void)

{

/*MODIFICATION_03 - Performs the FIR filtering so the convolution between

the filter coefficients b and the samples in the delay buffer x.

It uses pointers to move to the next element in x and b (02). */

 int n;

 double sum;

 int *xp = x; /*MODIFICATION_03 - Pointer to first element of x*/

 double *bp = b; /*MODIFICATION_03 - Pointer to first element of b*/

 sum = (*xp++) * (*bp++); /*MODIFICATION_03 - MAC using pointers*/

 for(n = N - 1; n > 0; n--)

 {

 sum += (*xp++) * (*bp++); /*MODIFICATION_03 - MAC using pointers*/

 x[n] = x[n - 1]; /*MODIFICATION_01 - Move data along buffer from lower element

to next higher*/

 }

 return sum;

}

Appendix 6: Fourth implementation of FIR filter (intio.c) (circular buffer, using pointers)

Implementation4_circular_pointers.c

/***

 , DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

 , , IMPERIAL COLLEGE LONDON

 , EE 3.19: Real Time Digital Signal Processing

 , Dr Paul Mitcheson and Daniel Harvey

 , , LAB 4: Real-time Implementation of FIR Filters

 , ********* I N T I O. C **********

 Implementation of FIR filter using indexes to execute the convolution function.

 MODIFICATIONS made by Quentin McGaw and Alexandra Rouhana, during February 2015

 MODIFICATION_04 correspond to this implementation.

 Updated for use on 6713 DSK by Danny Harvey: May-Aug 2006

 Updated for CCS V4 Sept 10

 **/

/*

 * You should modify the code so that interrupts are used to service the

 * audio port.

 */

/**************************** Pre-processor statements ******************************/

#include <stdlib.h> //Included so program can make use of DSP/BIOS configuration tool.

#include "dsp_bios_cfg.h"

#include "dsk6713.h"

#include "dsk6713_aic23.h"

/* The file dsk6713.h must be included in every program that uses the BSL. This

 example also includes dsk6713_aic23.h because it uses the

 AIC23 codec module (audio interface). */

#include <math.h> //math library (trigonometric functions)

//Some functions to help with writing/reading the audio ports when using interrupts.

#include <helper_functions_ISR.h>

typedef int bool; //Defines boolean type for debugging

#define true 1

#define false 0

#include "fir_coef.txt" /*MODIFICATION_01 - Includes the array of doubles b[].

 It represents the filter bp.*/

#include <string.h> /*MODIFICATION_01 - Library to use the memset function.*/

#define N (sizeof(b)/sizeof(b[0]))

/*MODIFICATION_01 - N is the order of the filter (number of coefficients).

 This is found by calculating the number of elements in the array of coefficients.

 In our case, N is set to 78. */

/******************************* Global declarations ********************************/

/* Audio port configuration settings: these values set registers in the AIC23 audio

 interface to configure it. See TI doc SLWS106D 3-3 to 3-10 for more info. */

DSK6713_AIC23_Config Config = { \

 /**/

 /* REGISTER, FUNCTION , SETTINGS */

 /**/\

 0x0017, /* 0 LEFTINVOL Left line input channel volume 0dB */\

 0x0017, /* 1 RIGHTINVOL Right line input channel volume 0dB */\

 0x01f9, /* 2 LEFTHPVOL Left channel headphone volume 0dB */\

 0x01f9, /* 3 RIGHTHPVOL Right channel headphone volume 0dB */\

 0x0011, /* 4 ANAPATH Analog audio path control DAC on, Mic boost 20dB*/\

 0x0000, /* 5 DIGPATH Digital audio path control All Filters off */\

 0x0000, /* 6 DPOWERDOWN Power down control All Hardware on */\

 0x0043, /* 7 DIGIF Digital audio interface format 16 bit */\

 0x008d, /* 8 SAMPLERATE Sample rate control 8 KHZ */\

 0x0001 /* 9 DIGACT Digital interface activation On */\

 /**/

};

// Codec handle:- a variable used to identify audio interface

DSK6713_AIC23_CodecHandle H_Codec;

int x[N]; /*MODIFICATION_01 - Defines a 78 elements input delay buffer*/

int offset = N - 1; /*MODIFICATION_04 - Used for the circular buffer. */

 /******************************* Function prototypes ********************************/

void init_hardware(void);

void init_var(void); /*MODIFICATION_01 - Initialises x[N] to zero using memset*/

void init_HWI(void);

void ISR_AIC(void); //Interrupt function

double circ_FIR(double sample_in);

/*MODIFICATION_04 - Function called by Interrupt function.

It performs the filtering of the input samples

This function uses a circular buffer using pointers. (04)*/

/********************************** Main routine ************************************/

void main()

{

 init_hardware(); //initialize board and the audio port

 init_var(); /*MODIFICATION_01 - Function initializing variables*/

 init_HWI(); //initialize hardware interrupts

 while(1){}; //loop indefinitely, waiting for interrupts

}

/********************************** init_hardware() **********************************/

void init_hardware()

{

 // Initialize the board support library, must be called first

 DSK6713_init();

 // Start the AIC23 codec using the settings defined above in config

 H_Codec = DSK6713_AIC23_openCodec(0, &Config);

 /* Function below sets the number of bits in word used by MSBSP (serial port) for

 receives from AIC23 (audio port). We are using a 32 bit packet containing two

 16 bit numbers hence 32BIT is set for receive */

 MCBSP_FSETS(RCR1, RWDLEN1, 32BIT);

 /* Configures interrupt to activate on each consecutive available 32 bits

 from Audio port hence an interrupt is generated for each L & R sample pair */

 MCBSP_FSETS(SPCR1, RINTM, FRM);

 /* These commands do the same thing as above but applied to data transfers to

 the audio port */

 MCBSP_FSETS(XCR1, XWDLEN1, 32BIT);

 MCBSP_FSETS(SPCR1, XINTM, FRM);

}

/************************************* init_var() ************************************/

void init_var(void) /*MODIFICATION_01 - Initializes variables (array x to zero)*/

{

 memset(x, 0, sizeof(x));

}

/********************************** init_HWI() **************************************/

void init_HWI(void)

{

 IRQ_globalDisable(); // Globally disables interrupt4

 IRQ_nmiEnable(); // Enables the NMI interrupt (used by the debugger)

 IRQ_map(IRQ_EVT_RINT1,4); // Maps an event to a physical interrupt

 IRQ_enable(IRQ_EVT_RINT1); // Enables the event

 IRQ_globalEnable(); // Globally enables interrupts

}

/************************** INTERRUPT SERVICE ROUTINE *******************************/

void ISR_AIC(void)

{

 mono_write_16Bit(circ_FIR(mono_read_16Bit()));

 /*MODIFICATION_01 - Output filtered sample.*/

}

/********************************* circ_FIR() ***************************************/

double circ_FIR(double sample_in)

{

/*MODIFICATION_04 - Performs the FIR filtering.

This function uses a circular buffer in order to execute the convolution. (04)*/

 double sum = 0;

 double *bp = b; /*MODIFICATION_04 - Coefficient variable pointer.

 This pointer is first set to the first element of b.*/

 int *x_start = x; /*MODIFICATION_04 - Input buffer constant pointer.

 This pointer points to the first element of x.*/

 double *bp_end = b + N; /*MODIFICATION_04 - Coefficient constant pointer.

 This pointer points to the last element of b.*/

 int *xp = x_start + offset; /*MODIFICATION_04 - Input buffer variable pointer.

 This pointer is first set to the 'offset'th element of

x.*/

 *xp = sample_in; /*MODIFICATION_04 - Stores the new sample at the address of xp.*/

 while(xp >= x_start)

 {

 sum += (*xp--) * (*bp++);

 /*MODIFICATION_04 - Shifts the address of the element of the input buffer

 from the 'offset' address to the first element's address (x_start).

 It shifts at the same time the address of the element of the coefficients

 from the first element's address to the 'offset' address.*/

 }

 xp = x_start + N - 1; /*MODIFICATION_04 -Reinitialises xp to the end of the

array.*/

 while(bp < bp_end)

 {

 sum += (*xp--) * (*bp++);

 /*MODIFICATION_04 - Shifts the address of the element of the coefficients

 from the 'offset' address to the last element's address (bp_end).

 It shifts at the same time the address of the element of the input buffer

 from the last (bp_end) element's address to the 'bp_end - offset' address.*/

 }

 offset--; /*MODIFICATION_04 - Decrements the offset*/

 if(offset < 0)

 {

 offset = N - 1; /*MODIFICATION_04 - Restores the offset to N-1 when out of

bound.*/

 }

 return sum;

}

