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1. Designing a discrete time single-pole filter 

 

  1.1. Objective 

The analogue filter required to design in a discrete time version is shown below. 

  
   Figure 1.1: Analogue filter circuit diagram 

This is a low-pass single-pole filter, with a time constant of RC =  103 × 10−6 =  10−3 = 1 𝑚𝑠 

 

 1.2. Laplace domain transfer function 

The Laplace domain transfer function of this filter can be obtained by analysing the 

analogue circuit with Kirchhoff current laws. The following relationship can hence be 

obtained: 
Vout − 0

(𝑠𝐶)−1
+ 

Vout − Vin

R
= 0 

 

⇒ R × Vout + (𝑠𝐶)−1 × (Vout − Vin) = 0 

 

⇒ Vout × (R + (𝑠𝐶)−1) = Vin × (𝑠𝐶)−1 

 

⇒
Vout

Vin
=

(𝑠𝐶)−1

(R + (𝑠𝐶)−1)
  

 

⇒
Vout

Vin
=

1

(𝑠R𝐶 + 1)
 

 

With R = 1 KΩ and C = 1 µF, the transfer function of this filter is given by: 

H(s) =
1

(0.001𝑠 + 1)
 

This transfer function has a single pole at 𝑠 = - 1000, and the cut off frequency is 

 𝜔0 =  1000 𝑟𝑎𝑑/𝑠 or 𝑓0 = 159 𝐻𝑧. 

 

 

 

 

 



 1.3. Z-domain transfer function 

The Z-domain is the discrete time equivalent of the Laplace domain.  

To obtain the system Z-domain transfer function H(z) from the Laplace domain transfer 

function H(s) previously found, the following method is used. 

Let 𝑇𝑠 be the sampling time, so we have: 

z =  𝑒𝑠𝑇𝑠 

⇒ s =  
1

𝑇𝑠

 × ln (𝑧) 

According to the Taylor series, the natural logarithm of z is given by: 

ln(𝑧) = 2 × [
𝑧 − 1

𝑧 + 1
+

1

2
(

𝑧 − 1

𝑧 + 1
)

2

+
1

3
(

𝑧 − 1

𝑧 + 1
)

3

+ ⋯ ] 

 

Approximating the natural logarithm of z to 2 ×
𝑧−1

𝑧+1
  the following is obtained: 

s =  
2

𝑇𝑠
 ×

𝑧 − 1

𝑧 + 1
 

 

This relationship is better known as the Tustin transform (or bilinear transform) and allows 

to transform a Laplace domain transfer function to a Z-domain transfer function. 

In our case, the sampling frequency of the discrete filter will be 8 KHz, so the sampling time 

is given by 𝑇𝑠 = 
1

8000
 = 1.25 × 10−4 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 = 125 µsecond 

 

so we have  s =  16000 ×
𝑧−1

𝑧+1
 thus H(z) is given by: 

H(𝑧) =
1

(0.001 × 16000 ×
𝑧 − 1
𝑧 + 1

+ 1)
 

⇒ H(𝑧) =
𝑧 + 1

(16 × (𝑧 − 1) + z + 1)
 

⇒ H(𝑧) =
𝑧 + 1

17𝑧 − 15
 

⇒ H(𝑧) =
1 + 𝑧−1

17 − 15𝑧−1
 

⇒ H(𝑧) =

1
17

+
1

17
𝑧−1

1 −
15
17

𝑧−1
 

The last expression of H(z) is in the form of the IIR filter Z-domain transfer function 

 H(𝑧) =
𝑏0+𝑏1𝑧−1

1+𝑎1𝑧−1
 where 𝑏0 = 𝑏1 =

1

17
 and 𝑎1 = −

15

17
 . 

 

This corresponds to the time domain difference equation 

 𝑦(𝑛) = 𝑏0𝑥(𝑛) + 𝑏1𝑥(𝑛 − 1) − 𝑎1𝑦(𝑛 − 1) 

            =
1

17
𝑥(𝑛) +  

1

17
𝑥(𝑛 − 1) + 

15

17
𝑦(𝑛 − 1) 



            =
1

17
(𝑥(𝑛) +  𝑥(𝑛 − 1) + 15𝑦(𝑛 − 1)) 

 

With 𝑇𝑠 = 1.25 x 10−4 second and 𝜔𝑝 being the frequency in the discrete time, the analogue 

domain frequency is then given by:  

  

𝜔 =  
2

𝑇𝑠
tan (

𝜔𝑝𝑇𝑠

2
) 

⇒
𝑇𝑠

2
𝜔 =  tan (

𝜔𝑝𝑇𝑠

2
) 

⇒
2

𝑇𝑠
tan−1(

𝑇𝑠

2
𝜔) = 𝜔𝑝 

Now, for an analogue domain cut off frequency of 1000 rad/second, the corresponding 

discrete domain cut off frequency would then be 

𝜔𝑝 =  
2

1.25 x 10−4
tan−1(

1.25 x 10−4

2
1000) 

   = 16000 tan−1(0.0625) 

           = 998.7 𝑟𝑎𝑑/𝑠𝑒𝑐𝑜𝑛𝑑 

           = 159 𝐻𝑒𝑟𝑡𝑧 

 

 

So the analogue domain and discrete domain cut off frequencies are approximately the 

same even after undertaking the Tustin transform. This is mostly due to the fact that the 

sampling frequency (8 KHz) is high compared to the value of the corner frequency. The 

product 𝜔𝑝𝑇𝑠 is thus small, making the continuous frequency very close to being equal to 

the discrete frequency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 1.4. Direct form 1 implementation 

     1.4.1. C code implementation (direct form 1) 

 

The first implementation of the IIR filter will be in the direct form 1. The time domain signal 

flow diagram is shown in figure 1.4.1.a and its corresponding z-domain diagram is shown in 

the next figure 1.4.1.b. 
 

 

 

 

    Figure 1.4.1.a: Time domain signal flow diagram 

 

 

 

 

 

 

   Figure 1.4.1.b: Corresponding Z-domain signal flow diagram 

 

 

 

To implement this on the DSK board, the file intio.c is modified. It first includes the 

coefficients a and b with the pre-processor statement #include "coef.txt" from the file 

coef.txt, which has the following content: 

 
const float b[] = {(1/(double)17), (1/(double)17)}; 

const float a[] = {1.0000, - 15/(double)17}; 

 

The const declarations ensure the coefficients included will not be changed by the program 

and will remain constants. The (double) casting in the initialisation of the arrays is needed 

for the numerator and/or the denominator in order to perform a double type resulting 

division. The first element (1.0000) of the array a is never used but is inserted to make the 

code clearer. 



The program then defines the order of the filter N as the number of elements of the array 

of coefficients a with #define N ((sizeof(a)/sizeof(a[0]))-1) and declares the global 

arrays of floats  x and y with float x[N+1] = {0}, y[N+1] = {0}; . These arrays will serve as 

delay buffers for the input x and the output y in the interrupt service routine (ISR).  

 

The last modification concerns the ISR, as described below. 
 
/************************** INTERRUPT SERVICE ROUTINE *******************************/   

void ISR_AIC(void) 

{ 

    x[0] = mono_read_16Bit(); 

    filter(); 

    mono_write_16Bit((int)y[0]); 

} 

 

where the function filter is defined as: 

 
void filter(void) 

{ 

    int n; 

    y[0] = b[0] * x[0]; 

    for(n = N; n > 0; n--) 

    { 

        y[0] += x[n]*b[n] - y[n]*a[n]; 

        y[n] = y[n-1]; 

        x[n] = x[n-1]; 

    } 

} 

 

 

This filter function requires 100 and 32 clock cycles respectively without optimisation and 

with the –o2 optimisation level option. 

 

 

The DSK memory is configured through the DSP_bios tool such that a heap memory is 

created. This section of memory is not natively managed by the DSK and can be managed 

by the user using calloc(). This function allocates a section of memory in the heap and 

returns a pointer to the first element of this block. This will be used to allocate memory 

dynamically in order to avoid changing the size of the arrays separately. It is achieved with 

the following global variable declarations: 
 

int N = (sizeof(a)/sizeof(a[0]))-1; //order of filter 

float *x, *y; //pointers to floats 

and the following code executed in the main(), before the hardware interrupt initialization: 
 

x = (float *) calloc(N, sizeof(float)); 

y = (float *) calloc(N, sizeof(float)); 

 

 



This implementation allows to use any order of IIR filter without changing the code. This ISR 

now requires 120 and 78 clock cycles respectively without optimisation and with the –o2 

optimisation level option. This code is slower but more flexible and will hence be used in 

what follows. 

 

 

 

    1.4.2. Testing and measurements (RC circuit) 

 

The input line (left and right) of the DSK board is connected to the computer output mini-

jack port, and its output port is connected to the channel 1 of the oscilloscope. The channel 

2 of the oscilloscope is connected to the input port of the DSK board. 

 

 

     1.4.2.1. Frequency response of the RC circuit 

The signal generator program is used to produce a variable frequency sine wave of 3.42 

volts peak-to-peak. The measurements obtained with the oscilloscope are shown in the 

table of appendix 1 and are plotted in the two following figures. 

 

 
 Figure 1.4.2.1.a: Output peak-to-peak voltage (V) VS physical frequency (Hz) 
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 Figure 1.4.2.1.b: Magnitude gain (dB) VS physical frequency (Hz) 
 

From the plot of figure 1.4.2.1.b, a gain of -3 dB (linear gain of 0.707) is attained at about 

160 Hz, which was the cut off frequency expected.  

 

 

 

     1.4.2.2. Measurement of the time constant of the RC circuit 

The signal generator program is used to produce a square wave at 25 Hz (not lower to avoid 

too much distortion from the DSK built-in high pass filter at the input port). The relevant 

observation are shown in the figure below.  

 

 
 Figure 1.4.2.2: Oscilloscope oberservation for time constant measurement of the digital filter 
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The time constant is the time required to charge the capacitor to 63.2% of the difference 

between the initial voltage value and the final one. In this case, the difference is  

d = 1.9 div  x 200mV – 0.0 div  x 200mV = 380mV and 63.2% of it is then 0.632 x 380mV = 

240.16mV which corresponds to 1.2 divisions. The time needed to reach 1.2 voltage division 

is 0.3 time division which corresponds to 0.4 div  x 2.5mS = 1 mS. This time constant 

corresponds to the previously calculated time constant (product R by C). 

 

 

The implementation of this single pole filter (RC circuit) is thus giving the expected 

theoretical results.  
 

 

 

 

 

 

 

 

 1.5. Direct form 2 implementation 

 

In terms of control, it can be shown that the direct form 1 signal flow diagram which was 

implemented in 1.4. is equivalent to a more efficient signal flow diagram called direct form 

2. This equivalence is due to the linearity and shift invariance of the system. 

 

 

 

The original signal flow diagram which has been implemented is shown below. 

 
 Figure 1.5.1: Signal flow diagram of direct form 1 for the 1 pole filter 
 

 

 

 

 

 

 

 

 



The order of the two parts of the transfer function can be swapped round without changing 

the transfer from input to output. This results in the following signal flow diagram: 

 

 
 Figure 1.5.2: Signal flow diagram of for the 1 pole filter 

 

This diagram can then be simplified by using only one delay element as shown in figure 

2.5.3. 
 

 
 Figure 1.5.3: Signal flow diagram of direct form 2 for the 1 pole filter 
 

 

From this diagram, the following relations are deduced. 

𝑠0[n] = x[n] −𝑎1𝑠1[n] 

y[n] = 𝑏0𝑠0[n] + 𝑏1𝑠1[n] 

where x[n] and y[n] are respectively the input and output signals, 𝑠0[n] is the signal at the 

centre and  𝑠1[n] is the delayed version signal of 𝑠0[n].  

 

In a more general case, for an IIR filter of order N these equations become 

𝑠0[n] = x[n] −𝑎1𝑠1[n] −𝑎2𝑠2[n]− … − 𝑎𝑁+1𝑠𝑁+1[n] 

y[n] = 𝑏0𝑠0[n] +𝑏1𝑠1[n] +𝑏2𝑠2[n]+ … + 𝑏𝑁+1𝑠𝑁+1[n] 

and the state variables 𝑠𝑖 have to be updated according to the following equations: 

𝑠𝑁+1[n+1] = 𝑠𝑁[n] 

𝑠𝑁[n+1] = 𝑠𝑁−1[n] 

… 

𝑠2[n+1] = 𝑠1[n]s 

𝑠1[n+1] = 𝑠0[𝑛] 

 

 



 

The modifications needed to implement this in the C code are described in the following.  

Only one array of floats is now needed and declared with a global float pointer by 

 float *s; The array is then allocated using s = (float *) calloc(N, sizeof(float)); in the 

main().  

 

The ISR_AIC() interrupt routine is modified as follows: 
/************************** INTERRUPT SERVICE ROUTINE *******************************/   

void ISR_AIC(void) 

{ 

    float y; 

    s[0] = mono_read_16Bit(); 

    y = filter(); 

    mono_write_16Bit((int)y); 

} 

 

where the function filter is defined as: 

 
float filter(void) 

{ 

    int n; 

    float y = 0; 

    for(n = N; n > 0; n--) 

    { 

        y += b[n] * s[n]; //sums the output 

        s[0] -= a[n]*s[n]; 

        s[n] = s[n-1]; //does the delay 

    } 

    y += b[0] * s[0]; 

    return y; 

} 

This implements the direct form II and gives the same experimental results as for the direct 

form I implementation. It consumes 122 and 66 clock cycles respectively without 

optimisation and with the –o2 optimisation option level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 1.6. Direct form 2 transposed implementation 

 

Applying the following rules to the direct form 2 signal flow diagram: 
 

A network is unchanged in behaviour if: 

-the direction of each branch is reversed 

-the branch divisions are interchanged with branch summations 

-the input and output are swapped round 

 

we end up with the direct form II transposed form, as shown in the signal flow diagram 

below. 

 

 
 Figure 1.6.1: Signal flow diagram of direct form II transposed for the 1 pole filter 
 

The implementation of this form will directly be made to support any order of filter N.  

For a IIR filter of order N = 3, the signal flow diagram for this direct form II transposed then 

becomes  

 



 
 Figure 1.6.2: Signal flow diagram of direct form II transposed for an IIR filter of order 3 
 

 

 

The easiest way to implement this form of IIR filter is by using a for loop and by keeping a 

record of the previous value of the output.  

 

The code used for the direct form II is modified as described below. 

 

 

 



A global variable float y; is used to store the previous value of the output (done in the 

interrupt routine). As before, an array s is declared in the main() by  s = (float *) 
calloc(N, sizeof(float));  

 

 

 

In the main(), the array s is allocated to contain N+1 element, where its last element is set 

to 0 (never changed): 

 
    s = (float *) calloc(N+1, sizeof(float)); 

    s[N+1] = 0; 

This last ‘N+1’th element is set to zero in order to perform all the calculation into the for 

loop of the filter() function described in the following.  

 

 

 

 

The ISR_AIC() is modified slightly  
/************************** INTERRUPT SERVICE ROUTINE *******************************/   

void ISR_AIC(void) 

{ 

    float x = mono_read_16Bit(); 

    filter(x); 

    mono_write_16Bit((int)y); 
} 

 

and the filter() function does the calculation of the equations derived from the signal flow 

diagram of figure 2.6.2.  

 
 
void filter(int x) 

{ 

    int i; 

    for(i = 1; i <= N; i++) 

    { 

        s[i] = b[i]*x - a[i]*y + s[i+1];  

    } 

    y = s[1] + b[0]*x; 

} 

 

 

Here y represents the previous value of the output during the calculations and is then 

assigned the new value of the output (to write). The array s represents the summation 

results of the products as from the signal flow diagram shown before.   

 

 

 



This implements the direct form II transposed and gives the same experimental results as 

before. It uses 100 and 77 clock cycles respectively without optimisation and with the –o2 

optimisation option level. 

 

 

 

The following table is a sum up of performance, measured in clock cycles, of each 

implementation realised for this single pole filter. 

 

Form implemented No optimisation Optimisation level option -o2 

Direct form I 100 32 

Direct form I with calloc 120 78 

Direct form II with calloc 122 66 

Direct form II transposed with calloc 100 77 

  Figure 1.6.3: Performance summary, in clock cycles (1 pole filter) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. Designing a discrete time bandpass filter 

 

  2.1. Objective 

 

The elliptic bandpass filter required to design in a discrete time version must satisfy the 

following specifications: 

Order: 4th  

Passband: 280 Hz to 470 Hz 

Passband ripple: 0.5 dB 

Stopband attenuation: 25 dB 

The coefficients a and b needed to implement this filter will be generated with a MatLab 

script (using the function ellip). 

 

 

 2.2. MatLab IIR design script 

 

To design the required filter, the following script is used:  

 
%% ************* MATLAB IIR design script ************* %% 

%% Authors: Alexandra Rouhana and Quentin McGaw %% 

%% Date: February-March 2015 %% 

 

     

% ~~~~~~~~~~~~~~~ P A R A M E T E R S ~~~~~~~~~~~~~~~ 

% ~~~ Filter parameters ~~~ 

order = 4; 

% ~~~ Frequency parameters ~~~ 

Fsampling = 8000; %sampling frequency (C6713 sampling) 

Fpassband = [280 470]; %Pass band frequency range 

% ~~~ Gain parameters ~~~ 

PB_ripple=0.5; %pass band ripple (dB) 

SB_attenuation=25; %stop band attenuation (dB) 

 

% ~~~~~~~~~~~~~ C A L C U L A T I O N S ~~~~~~~~~~~~~ 

Nyquist = Fsampling/2; %Nyquist frequency 

Fnormalized = Fpassband/Nyquist;  

%normalized frequencies to the Nyquist frequency 

[b,a] = ellip(order/2,PB_ripple,SB_attenuation,Fnormalized); 

 

% ~~~~~~~~~~~~~~~~~ R E S U L T S ~~~~~~~~~~~~~~~~~~ 

freqz(b,a); 

str_a='const float a[] = {'; 

str_b='const float b[] = {'; 

for i = 1:order 

    str_a = [str_a num2str(a(i)) ',']; 

    str_b = [str_b num2str(b(i)) ',']; 

end 

str_a = [str_a num2str(a(order+1)) '};']; 

str_b = [str_b num2str(b(order+1)) '};']; 

str_all = [str_a '\n' str_b '\n' '\n']; 

dlmwrite('coef.txt',str_all,''); 

 

 

 



This script generates the coefficients a  and b in the text file coef.txt where float a[] = 
{1,-3.6305,5.0962,-3.2741,0.81432};float b[] = {0.057901,-0.19414,0.2728,-

0.19414,0.057901}; as well as the MatLab frequency plot as shown in the figure 3.2.a 

below. 

 

     Figure 2.2.a: MatLab frequency plot response for the elliptic filter 
 

The magnitude response corresponds to the required specifications (passband, ripple, 

stopband, attenuation).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 2.3. Direct form II implementation 

 

To implement this 4th order IIR filter, the code written in part 2.5 will be used as it works 

with any order of filter. As a reminder, the interrupt routine for the direct form II is coded 

as follow: 
 

 

/************************** INTERRUPT SERVICE ROUTINE *******************************/   

void ISR_AIC(void) 

{ 

    float y; 

    s[0] = mono_read_16Bit(); 

    y = filter(); 

    mono_write_16Bit(y); 

} 

 

float filter(void) 

{ 

    int n; 

    float y = 0; 

    for(n = N; n > 0; n--) 

    { 

        y += b[n] * s[n]; //sums the output 

        s[0] -= a[n]*s[n]; 

        s[n] = s[n-1]; //does the delay 

    } 

    y += b[0] * s[0]; 

    return y; 

} 

 

 

The function filter() uses 458 and 214 clock cycles respectively without optimisation and 

with the –o2 optimisation level option. With the single pole filter, these values were 122 

and 66 clock cycles.  

 

It can thus be deduced that for a filter of order n, each sample requires 
458−122

4−1 
𝑛 =  

336

3
𝑛 =

112𝑛 clock cycles without optimisation. The instruction cycles per sample needed in the 

form A + Bn is thus 10 + 112n with no optimisation option.  

 

Similarly, with the –o2 optimisation level option, each sample requires 
214−66

4−1 
𝑛 =  

148

3
𝑛 =

50𝑛 instruction cycles. In this case, the instruction cycles per sample needed is 16 + 55n.  

 

 

 

 

 

 

 

 



 2.4. Frequency response measurement using APX515 

 

The APX515 spectrum analyser is connected to the DSK board running the code of the 

direct form II with the coefficients a and b corresponding to the 4th order IIR filter.  

 

The following plot is obtained concerning the magnitude response of the designed digital 

filter. 

 

     Figure 2.4.a: Gain response of the digital filter, using APX500 software 
 

The passband corresponds to the specifications (280 Hz to 470 Hz), as does the passband 

ripple (0.5 dB) and the stopband attenuation. Please again note all of this gain plot is 

shifted by -12.5 dB because of the attenuators at the input ports which divide the input 

signal by 4. 

 

 

 

 

 

 

 

 

 

 

 

 



 2.5. Direct form II transposed implementation 

 

To implement this 4th order IIR filter, the code written in part 2.6 will be used as it works 

with any order of filter. Please refer to section 2.6 for the C code description. As a quick 

reminder, the interrupt routine is as follows: 
 

 

/************************** INTERRUPT SERVICE ROUTINE *******************************/   

void ISR_AIC(void) 

{ 

    float x = mono_read_16Bit(); 

    filter(x); 

    mono_write_16Bit((int)y); 

} 

 

void filter(int x) 

{ 

    int i; 

    for(i = 1; i <= N; i++) 

    { 

        s[i] = b[i]*x - a[i]*y + s[i+1];  

    } 

    y = s[1] + b[0]*x; 

} 

 

 

The function filter() uses 229 and 90 clock cycles respectively without optimisation and with 

the –o2 optimisation level option. With the single pole filter, these values were 100 and 77 

clock cycles.  

 

It can thus be deduced that for a filter of order n, each sample requires 
229−100

4−1 
𝑛 =  

129

3
𝑛 =

43𝑛 clock cycles without optimisation. The instruction cycles per sample needed in the 

form A + Bn is thus 67 + 43n with no optimisation option.  

 

Similarly, with the –o2 optimisation level option, each sample requires 
90−77

4−1 
𝑛 =  

13

3
𝑛 = 5𝑛 

instruction cycles. In this case, the instruction cycles per sample needed is 72 + 5n. 

 

 

The following table is a sum up of performance, measured in clock cycles, of each 

implementation realised for this 4th order IIR filter. 

 

Form implemented No optimisation Optimisation level option -o2 

Direct form I 366 117 

Direct form I with calloc 392 252 

Direct form II with calloc 458 214 

Direct form II transposed with calloc 229 90 

  Figure 2.5.a: Performance summary, in clock cycles (Passband filter) 
 



Conclusion 

 

The following table is a summary of the instruction cycles required for an IIR filter of order n 

in the form A + Bn.  

 

Form implemented A B 

Direct form II 10 112 

Direct form II transposed 67 43 

Direct form II with -o2 16 55 

Direct form II transposed with -o2 72 5 

 

 

This clearly shows the best solution is the direct form II transposed with –o2 for any order. 

 

This lab have demonstrated how to implement a digital IIR filter in various forms and with 

different optimisation option levels. It is essential to understand the importance of the 

signal flow diagram manipulations which allow to make an algorithm way faster.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 1: Measurements results for single-pole IIR filter (RC circuit) 

 
 

Physical Frequency (Hz) Output p-p voltage (V) Linear Gain Gain (dB) 

0 0 0.0001 -80 

6 0.42 0.29787234 -10.51939645 

8 0.604 0.428368794 -7.363643481 

10 0.772 0.54751773 -5.232036246 

15 1.07 0.758865248 -2.396706699 

20 1.23 0.872340426 -1.186280024 

25 1.31 0.929078014 -0.63895634 

30 1.36 0.964539007 -0.313604086 

35 1.39 0.985815603 -0.124086248 

40 1.4 0.992907801 -0.06182154 

50 1.41 1 0 

60 1.4 0.992907801 -0.06182154 

70 1.38 0.978723404 -0.186800525 

80 1.33 0.943262411 -0.507349434 

90 1.31 0.929078014 -0.63895634 

100 1.27 0.90070922 -0.908307834 

110 1.23 0.872340426 -1.186280024 

120 1.18 0.836879433 -1.546742107 

130 1.12 0.794326241 -2.0000218 

140 1.07 0.758865248 -2.396706699 

150 1.03 0.730496454 -2.727637759 

160 1 0.709219858 -2.984382253 

170 0.986 0.69929078 -3.106843954 

180 0.975 0.691489362 -3.204289939 

190 0.953 0.675886525 -3.40252424 

200 0.925 0.656028369 -3.661547598 

210 0.899 0.637588652 -3.909188418 

220 0.87 0.617021277 -4.193997201 

230 0.845 0.59929078 -4.447248074 

240 0.828 0.587234043 -4.623775517 

250 0.802 0.568794326 -4.900894887 

260 0.785 0.556737589 -5.086989118 

270 0.76 0.539007092 -5.368110407 

280 0.745 0.528368794 -5.541256798 

 


