

Department of Electrical and Electronic Engineering Imperial College London

 Real-time digital signal processing

 Report on “Real time implementation of IIR filters” (laboratory 5)
 22 pages total

Report written by:

Quentin McGaw, CID 00746622 Username QDM12

Alexandra Rouhana, CID 00736752 Username AR4412

1. Designing a discrete time single-pole filter

 1.1. Objective

The analogue filter required to design in a discrete time version is shown below.

 Figure 1.1: Analogue filter circuit diagram

This is a low-pass single-pole filter, with a time constant of RC = 103 × 10−6 = 10−3 = 1 𝑚𝑠

 1.2. Laplace domain transfer function

The Laplace domain transfer function of this filter can be obtained by analysing the

analogue circuit with Kirchhoff current laws. The following relationship can hence be

obtained:
Vout − 0

(𝑠𝐶)−1
+

Vout − Vin

R
= 0

⇒ R × Vout + (𝑠𝐶)−1 × (Vout − Vin) = 0

⇒ Vout × (R + (𝑠𝐶)−1) = Vin × (𝑠𝐶)−1

⇒
Vout

Vin
=

(𝑠𝐶)−1

(R + (𝑠𝐶)−1)

⇒
Vout

Vin
=

1

(𝑠R𝐶 + 1)

With R = 1 KΩ and C = 1 µF, the transfer function of this filter is given by:

H(s) =
1

(0.001𝑠 + 1)

This transfer function has a single pole at 𝑠 = - 1000, and the cut off frequency is

 𝜔0 = 1000 𝑟𝑎𝑑/𝑠 or 𝑓0 = 159 𝐻𝑧.

 1.3. Z-domain transfer function

The Z-domain is the discrete time equivalent of the Laplace domain.

To obtain the system Z-domain transfer function H(z) from the Laplace domain transfer

function H(s) previously found, the following method is used.

Let 𝑇𝑠 be the sampling time, so we have:

z = 𝑒𝑠𝑇𝑠

⇒ s =
1

𝑇𝑠

 × ln (𝑧)

According to the Taylor series, the natural logarithm of z is given by:

ln(𝑧) = 2 × [
𝑧 − 1

𝑧 + 1
+

1

2
(

𝑧 − 1

𝑧 + 1
)

2

+
1

3
(

𝑧 − 1

𝑧 + 1
)

3

+ ⋯]

Approximating the natural logarithm of z to 2 ×
𝑧−1

𝑧+1
 the following is obtained:

s =
2

𝑇𝑠
 ×

𝑧 − 1

𝑧 + 1

This relationship is better known as the Tustin transform (or bilinear transform) and allows

to transform a Laplace domain transfer function to a Z-domain transfer function.

In our case, the sampling frequency of the discrete filter will be 8 KHz, so the sampling time

is given by 𝑇𝑠 =
1

8000
 = 1.25 × 10−4 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 = 125 µsecond

so we have s = 16000 ×
𝑧−1

𝑧+1
 thus H(z) is given by:

H(𝑧) =
1

(0.001 × 16000 ×
𝑧 − 1
𝑧 + 1

+ 1)

⇒ H(𝑧) =
𝑧 + 1

(16 × (𝑧 − 1) + z + 1)

⇒ H(𝑧) =
𝑧 + 1

17𝑧 − 15

⇒ H(𝑧) =
1 + 𝑧−1

17 − 15𝑧−1

⇒ H(𝑧) =

1
17

+
1

17
𝑧−1

1 −
15
17

𝑧−1

The last expression of H(z) is in the form of the IIR filter Z-domain transfer function

 H(𝑧) =
𝑏0+𝑏1𝑧−1

1+𝑎1𝑧−1
 where 𝑏0 = 𝑏1 =

1

17
 and 𝑎1 = −

15

17
 .

This corresponds to the time domain difference equation

 𝑦(𝑛) = 𝑏0𝑥(𝑛) + 𝑏1𝑥(𝑛 − 1) − 𝑎1𝑦(𝑛 − 1)

 =
1

17
𝑥(𝑛) +

1

17
𝑥(𝑛 − 1) +

15

17
𝑦(𝑛 − 1)

 =
1

17
(𝑥(𝑛) + 𝑥(𝑛 − 1) + 15𝑦(𝑛 − 1))

With 𝑇𝑠 = 1.25 x 10−4 second and 𝜔𝑝 being the frequency in the discrete time, the analogue

domain frequency is then given by:

𝜔 =
2

𝑇𝑠
tan (

𝜔𝑝𝑇𝑠

2
)

⇒
𝑇𝑠

2
𝜔 = tan (

𝜔𝑝𝑇𝑠

2
)

⇒
2

𝑇𝑠
tan−1(

𝑇𝑠

2
𝜔) = 𝜔𝑝

Now, for an analogue domain cut off frequency of 1000 rad/second, the corresponding

discrete domain cut off frequency would then be

𝜔𝑝 =
2

1.25 x 10−4
tan−1(

1.25 x 10−4

2
1000)

 = 16000 tan−1(0.0625)

 = 998.7 𝑟𝑎𝑑/𝑠𝑒𝑐𝑜𝑛𝑑

 = 159 𝐻𝑒𝑟𝑡𝑧

So the analogue domain and discrete domain cut off frequencies are approximately the

same even after undertaking the Tustin transform. This is mostly due to the fact that the

sampling frequency (8 KHz) is high compared to the value of the corner frequency. The

product 𝜔𝑝𝑇𝑠 is thus small, making the continuous frequency very close to being equal to

the discrete frequency.

 1.4. Direct form 1 implementation

 1.4.1. C code implementation (direct form 1)

The first implementation of the IIR filter will be in the direct form 1. The time domain signal

flow diagram is shown in figure 1.4.1.a and its corresponding z-domain diagram is shown in

the next figure 1.4.1.b.

 Figure 1.4.1.a: Time domain signal flow diagram

 Figure 1.4.1.b: Corresponding Z-domain signal flow diagram

To implement this on the DSK board, the file intio.c is modified. It first includes the

coefficients a and b with the pre-processor statement #include "coef.txt" from the file

coef.txt, which has the following content:

const float b[] = {(1/(double)17), (1/(double)17)};

const float a[] = {1.0000, - 15/(double)17};

The const declarations ensure the coefficients included will not be changed by the program

and will remain constants. The (double) casting in the initialisation of the arrays is needed

for the numerator and/or the denominator in order to perform a double type resulting

division. The first element (1.0000) of the array a is never used but is inserted to make the

code clearer.

The program then defines the order of the filter N as the number of elements of the array

of coefficients a with #define N ((sizeof(a)/sizeof(a[0]))-1) and declares the global

arrays of floats x and y with float x[N+1] = {0}, y[N+1] = {0}; . These arrays will serve as

delay buffers for the input x and the output y in the interrupt service routine (ISR).

The last modification concerns the ISR, as described below.

/************************** INTERRUPT SERVICE ROUTINE *******************************/

void ISR_AIC(void)

{

 x[0] = mono_read_16Bit();

 filter();

 mono_write_16Bit((int)y[0]);

}

where the function filter is defined as:

void filter(void)

{

 int n;

 y[0] = b[0] * x[0];

 for(n = N; n > 0; n--)

 {

 y[0] += x[n]*b[n] - y[n]*a[n];

 y[n] = y[n-1];

 x[n] = x[n-1];

 }

}

This filter function requires 100 and 32 clock cycles respectively without optimisation and

with the –o2 optimisation level option.

The DSK memory is configured through the DSP_bios tool such that a heap memory is

created. This section of memory is not natively managed by the DSK and can be managed

by the user using calloc(). This function allocates a section of memory in the heap and

returns a pointer to the first element of this block. This will be used to allocate memory

dynamically in order to avoid changing the size of the arrays separately. It is achieved with

the following global variable declarations:

int N = (sizeof(a)/sizeof(a[0]))-1; //order of filter

float *x, *y; //pointers to floats

and the following code executed in the main(), before the hardware interrupt initialization:

x = (float *) calloc(N, sizeof(float));

y = (float *) calloc(N, sizeof(float));

This implementation allows to use any order of IIR filter without changing the code. This ISR

now requires 120 and 78 clock cycles respectively without optimisation and with the –o2

optimisation level option. This code is slower but more flexible and will hence be used in

what follows.

 1.4.2. Testing and measurements (RC circuit)

The input line (left and right) of the DSK board is connected to the computer output mini-

jack port, and its output port is connected to the channel 1 of the oscilloscope. The channel

2 of the oscilloscope is connected to the input port of the DSK board.

 1.4.2.1. Frequency response of the RC circuit

The signal generator program is used to produce a variable frequency sine wave of 3.42

volts peak-to-peak. The measurements obtained with the oscilloscope are shown in the

table of appendix 1 and are plotted in the two following figures.

 Figure 1.4.2.1.a: Output peak-to-peak voltage (V) VS physical frequency (Hz)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 50 100 150 200 250 300

Output peak-to-peak voltage VS physical
frequency

 Figure 1.4.2.1.b: Magnitude gain (dB) VS physical frequency (Hz)

From the plot of figure 1.4.2.1.b, a gain of -3 dB (linear gain of 0.707) is attained at about

160 Hz, which was the cut off frequency expected.

 1.4.2.2. Measurement of the time constant of the RC circuit

The signal generator program is used to produce a square wave at 25 Hz (not lower to avoid

too much distortion from the DSK built-in high pass filter at the input port). The relevant

observation are shown in the figure below.

 Figure 1.4.2.2: Oscilloscope oberservation for time constant measurement of the digital filter

-12

-10

-8

-6

-4

-2

0

0 50 100 150 200 250 300

Magnitude response (dB)

The time constant is the time required to charge the capacitor to 63.2% of the difference

between the initial voltage value and the final one. In this case, the difference is

d = 1.9 div x 200mV – 0.0 div x 200mV = 380mV and 63.2% of it is then 0.632 x 380mV =

240.16mV which corresponds to 1.2 divisions. The time needed to reach 1.2 voltage division

is 0.3 time division which corresponds to 0.4 div x 2.5mS = 1 mS. This time constant

corresponds to the previously calculated time constant (product R by C).

The implementation of this single pole filter (RC circuit) is thus giving the expected

theoretical results.

 1.5. Direct form 2 implementation

In terms of control, it can be shown that the direct form 1 signal flow diagram which was

implemented in 1.4. is equivalent to a more efficient signal flow diagram called direct form

2. This equivalence is due to the linearity and shift invariance of the system.

The original signal flow diagram which has been implemented is shown below.

 Figure 1.5.1: Signal flow diagram of direct form 1 for the 1 pole filter

The order of the two parts of the transfer function can be swapped round without changing

the transfer from input to output. This results in the following signal flow diagram:

 Figure 1.5.2: Signal flow diagram of for the 1 pole filter

This diagram can then be simplified by using only one delay element as shown in figure

2.5.3.

 Figure 1.5.3: Signal flow diagram of direct form 2 for the 1 pole filter

From this diagram, the following relations are deduced.

𝑠0[n] = x[n] −𝑎1𝑠1[n]

y[n] = 𝑏0𝑠0[n] + 𝑏1𝑠1[n]

where x[n] and y[n] are respectively the input and output signals, 𝑠0[n] is the signal at the

centre and 𝑠1[n] is the delayed version signal of 𝑠0[n].

In a more general case, for an IIR filter of order N these equations become

𝑠0[n] = x[n] −𝑎1𝑠1[n] −𝑎2𝑠2[n]− … − 𝑎𝑁+1𝑠𝑁+1[n]

y[n] = 𝑏0𝑠0[n] +𝑏1𝑠1[n] +𝑏2𝑠2[n]+ … + 𝑏𝑁+1𝑠𝑁+1[n]

and the state variables 𝑠𝑖 have to be updated according to the following equations:

𝑠𝑁+1[n+1] = 𝑠𝑁[n]

𝑠𝑁[n+1] = 𝑠𝑁−1[n]

…

𝑠2[n+1] = 𝑠1[n]s

𝑠1[n+1] = 𝑠0[𝑛]

The modifications needed to implement this in the C code are described in the following.

Only one array of floats is now needed and declared with a global float pointer by

 float *s; The array is then allocated using s = (float *) calloc(N, sizeof(float)); in the

main().

The ISR_AIC() interrupt routine is modified as follows:
/************************** INTERRUPT SERVICE ROUTINE *******************************/

void ISR_AIC(void)

{

 float y;

 s[0] = mono_read_16Bit();

 y = filter();

 mono_write_16Bit((int)y);

}

where the function filter is defined as:

float filter(void)

{

 int n;

 float y = 0;

 for(n = N; n > 0; n--)

 {

 y += b[n] * s[n]; //sums the output

 s[0] -= a[n]*s[n];

 s[n] = s[n-1]; //does the delay

 }

 y += b[0] * s[0];

 return y;

}

This implements the direct form II and gives the same experimental results as for the direct

form I implementation. It consumes 122 and 66 clock cycles respectively without

optimisation and with the –o2 optimisation option level.

 1.6. Direct form 2 transposed implementation

Applying the following rules to the direct form 2 signal flow diagram:

A network is unchanged in behaviour if:

-the direction of each branch is reversed

-the branch divisions are interchanged with branch summations

-the input and output are swapped round

we end up with the direct form II transposed form, as shown in the signal flow diagram

below.

 Figure 1.6.1: Signal flow diagram of direct form II transposed for the 1 pole filter

The implementation of this form will directly be made to support any order of filter N.

For a IIR filter of order N = 3, the signal flow diagram for this direct form II transposed then

becomes

 Figure 1.6.2: Signal flow diagram of direct form II transposed for an IIR filter of order 3

The easiest way to implement this form of IIR filter is by using a for loop and by keeping a

record of the previous value of the output.

The code used for the direct form II is modified as described below.

A global variable float y; is used to store the previous value of the output (done in the

interrupt routine). As before, an array s is declared in the main() by s = (float *)
calloc(N, sizeof(float));

In the main(), the array s is allocated to contain N+1 element, where its last element is set

to 0 (never changed):

 s = (float *) calloc(N+1, sizeof(float));

 s[N+1] = 0;

This last ‘N+1’th element is set to zero in order to perform all the calculation into the for

loop of the filter() function described in the following.

The ISR_AIC() is modified slightly
/************************** INTERRUPT SERVICE ROUTINE *******************************/

void ISR_AIC(void)

{

 float x = mono_read_16Bit();

 filter(x);

 mono_write_16Bit((int)y);
}

and the filter() function does the calculation of the equations derived from the signal flow

diagram of figure 2.6.2.

void filter(int x)

{

 int i;

 for(i = 1; i <= N; i++)

 {

 s[i] = b[i]*x - a[i]*y + s[i+1];

 }

 y = s[1] + b[0]*x;

}

Here y represents the previous value of the output during the calculations and is then

assigned the new value of the output (to write). The array s represents the summation

results of the products as from the signal flow diagram shown before.

This implements the direct form II transposed and gives the same experimental results as

before. It uses 100 and 77 clock cycles respectively without optimisation and with the –o2

optimisation option level.

The following table is a sum up of performance, measured in clock cycles, of each

implementation realised for this single pole filter.

Form implemented No optimisation Optimisation level option -o2

Direct form I 100 32

Direct form I with calloc 120 78

Direct form II with calloc 122 66

Direct form II transposed with calloc 100 77

 Figure 1.6.3: Performance summary, in clock cycles (1 pole filter)

2. Designing a discrete time bandpass filter

 2.1. Objective

The elliptic bandpass filter required to design in a discrete time version must satisfy the

following specifications:

Order: 4th

Passband: 280 Hz to 470 Hz

Passband ripple: 0.5 dB

Stopband attenuation: 25 dB

The coefficients a and b needed to implement this filter will be generated with a MatLab

script (using the function ellip).

 2.2. MatLab IIR design script

To design the required filter, the following script is used:

%% ************* MATLAB IIR design script ************* %%

%% Authors: Alexandra Rouhana and Quentin McGaw %%

%% Date: February-March 2015 %%

% ~~~~~~~~~~~~~~~ P A R A M E T E R S ~~~~~~~~~~~~~~~

% ~~~ Filter parameters ~~~

order = 4;

% ~~~ Frequency parameters ~~~

Fsampling = 8000; %sampling frequency (C6713 sampling)

Fpassband = [280 470]; %Pass band frequency range

% ~~~ Gain parameters ~~~

PB_ripple=0.5; %pass band ripple (dB)

SB_attenuation=25; %stop band attenuation (dB)

% ~~~~~~~~~~~~~ C A L C U L A T I O N S ~~~~~~~~~~~~~

Nyquist = Fsampling/2; %Nyquist frequency

Fnormalized = Fpassband/Nyquist;

%normalized frequencies to the Nyquist frequency

[b,a] = ellip(order/2,PB_ripple,SB_attenuation,Fnormalized);

% ~~~~~~~~~~~~~~~~~ R E S U L T S ~~~~~~~~~~~~~~~~~~

freqz(b,a);

str_a='const float a[] = {';

str_b='const float b[] = {';

for i = 1:order

 str_a = [str_a num2str(a(i)) ','];

 str_b = [str_b num2str(b(i)) ','];

end

str_a = [str_a num2str(a(order+1)) '};'];

str_b = [str_b num2str(b(order+1)) '};'];

str_all = [str_a '\n' str_b '\n' '\n'];

dlmwrite('coef.txt',str_all,'');

This script generates the coefficients a and b in the text file coef.txt where float a[] =
{1,-3.6305,5.0962,-3.2741,0.81432};float b[] = {0.057901,-0.19414,0.2728,-

0.19414,0.057901}; as well as the MatLab frequency plot as shown in the figure 3.2.a

below.

 Figure 2.2.a: MatLab frequency plot response for the elliptic filter

The magnitude response corresponds to the required specifications (passband, ripple,

stopband, attenuation).

 2.3. Direct form II implementation

To implement this 4th order IIR filter, the code written in part 2.5 will be used as it works

with any order of filter. As a reminder, the interrupt routine for the direct form II is coded

as follow:

/************************** INTERRUPT SERVICE ROUTINE *******************************/

void ISR_AIC(void)

{

 float y;

 s[0] = mono_read_16Bit();

 y = filter();

 mono_write_16Bit(y);

}

float filter(void)

{

 int n;

 float y = 0;

 for(n = N; n > 0; n--)

 {

 y += b[n] * s[n]; //sums the output

 s[0] -= a[n]*s[n];

 s[n] = s[n-1]; //does the delay

 }

 y += b[0] * s[0];

 return y;

}

The function filter() uses 458 and 214 clock cycles respectively without optimisation and

with the –o2 optimisation level option. With the single pole filter, these values were 122

and 66 clock cycles.

It can thus be deduced that for a filter of order n, each sample requires
458−122

4−1
𝑛 =

336

3
𝑛 =

112𝑛 clock cycles without optimisation. The instruction cycles per sample needed in the

form A + Bn is thus 10 + 112n with no optimisation option.

Similarly, with the –o2 optimisation level option, each sample requires
214−66

4−1
𝑛 =

148

3
𝑛 =

50𝑛 instruction cycles. In this case, the instruction cycles per sample needed is 16 + 55n.

 2.4. Frequency response measurement using APX515

The APX515 spectrum analyser is connected to the DSK board running the code of the

direct form II with the coefficients a and b corresponding to the 4th order IIR filter.

The following plot is obtained concerning the magnitude response of the designed digital

filter.

 Figure 2.4.a: Gain response of the digital filter, using APX500 software

The passband corresponds to the specifications (280 Hz to 470 Hz), as does the passband

ripple (0.5 dB) and the stopband attenuation. Please again note all of this gain plot is

shifted by -12.5 dB because of the attenuators at the input ports which divide the input

signal by 4.

 2.5. Direct form II transposed implementation

To implement this 4th order IIR filter, the code written in part 2.6 will be used as it works

with any order of filter. Please refer to section 2.6 for the C code description. As a quick

reminder, the interrupt routine is as follows:

/************************** INTERRUPT SERVICE ROUTINE *******************************/

void ISR_AIC(void)

{

 float x = mono_read_16Bit();

 filter(x);

 mono_write_16Bit((int)y);

}

void filter(int x)

{

 int i;

 for(i = 1; i <= N; i++)

 {

 s[i] = b[i]*x - a[i]*y + s[i+1];

 }

 y = s[1] + b[0]*x;

}

The function filter() uses 229 and 90 clock cycles respectively without optimisation and with

the –o2 optimisation level option. With the single pole filter, these values were 100 and 77

clock cycles.

It can thus be deduced that for a filter of order n, each sample requires
229−100

4−1
𝑛 =

129

3
𝑛 =

43𝑛 clock cycles without optimisation. The instruction cycles per sample needed in the

form A + Bn is thus 67 + 43n with no optimisation option.

Similarly, with the –o2 optimisation level option, each sample requires
90−77

4−1
𝑛 =

13

3
𝑛 = 5𝑛

instruction cycles. In this case, the instruction cycles per sample needed is 72 + 5n.

The following table is a sum up of performance, measured in clock cycles, of each

implementation realised for this 4th order IIR filter.

Form implemented No optimisation Optimisation level option -o2

Direct form I 366 117

Direct form I with calloc 392 252

Direct form II with calloc 458 214

Direct form II transposed with calloc 229 90

 Figure 2.5.a: Performance summary, in clock cycles (Passband filter)

Conclusion

The following table is a summary of the instruction cycles required for an IIR filter of order n

in the form A + Bn.

Form implemented A B

Direct form II 10 112

Direct form II transposed 67 43

Direct form II with -o2 16 55

Direct form II transposed with -o2 72 5

This clearly shows the best solution is the direct form II transposed with –o2 for any order.

This lab have demonstrated how to implement a digital IIR filter in various forms and with

different optimisation option levels. It is essential to understand the importance of the

signal flow diagram manipulations which allow to make an algorithm way faster.

Appendix 1: Measurements results for single-pole IIR filter (RC circuit)

Physical Frequency (Hz) Output p-p voltage (V) Linear Gain Gain (dB)

0 0 0.0001 -80

6 0.42 0.29787234 -10.51939645

8 0.604 0.428368794 -7.363643481

10 0.772 0.54751773 -5.232036246

15 1.07 0.758865248 -2.396706699

20 1.23 0.872340426 -1.186280024

25 1.31 0.929078014 -0.63895634

30 1.36 0.964539007 -0.313604086

35 1.39 0.985815603 -0.124086248

40 1.4 0.992907801 -0.06182154

50 1.41 1 0

60 1.4 0.992907801 -0.06182154

70 1.38 0.978723404 -0.186800525

80 1.33 0.943262411 -0.507349434

90 1.31 0.929078014 -0.63895634

100 1.27 0.90070922 -0.908307834

110 1.23 0.872340426 -1.186280024

120 1.18 0.836879433 -1.546742107

130 1.12 0.794326241 -2.0000218

140 1.07 0.758865248 -2.396706699

150 1.03 0.730496454 -2.727637759

160 1 0.709219858 -2.984382253

170 0.986 0.69929078 -3.106843954

180 0.975 0.691489362 -3.204289939

190 0.953 0.675886525 -3.40252424

200 0.925 0.656028369 -3.661547598

210 0.899 0.637588652 -3.909188418

220 0.87 0.617021277 -4.193997201

230 0.845 0.59929078 -4.447248074

240 0.828 0.587234043 -4.623775517

250 0.802 0.568794326 -4.900894887

260 0.785 0.556737589 -5.086989118

270 0.76 0.539007092 -5.368110407

280 0.745 0.528368794 -5.541256798

