
Stamina, a coffee monitoring system

Alexandra Rouhana 1, Lorenzo Scutigliani 2, and Quentin McGaw 3

1 Electrical and electronic engineering, Imperial College London
alexandra.rouhana12@imperial.ac.uk

2 Electrical and electronic engineering, Imperial College London
lorenzo.scutigliani12@imperial.ac.uk

3 Electrical and electronic engineering, Imperial College London
quentin.mcgaw12@imperial.ac.uk

28 March 2016

 Abstract. Coffee drinking allows to reduce tiredness and is widely used in our society. In particular, the

caffeine contained in coffee influences the quality of sleep of coffee drinkers. However, since each person reacts

differently to caffeine, there is no rule of thumb to determine the optimal coffee intake schedule in order to maximise

performance during the day while ensuring high quality sleep at night. Stamina is a solution providing this missing

information to the coffee drinker, by monitoring and analysing the activity of the user over several days. It uses the

sensors of both an Android smartphone and smartwatch to analyse the activity of the users, such as when they wake

up, go to sleep or drink coffee. A remote server stores these data and analyses them with a clustering machine learning

technique to provide suggestions to the users through their mobile devices about their daily coffee consumption.

Keywords: Caffeine, Sleep quality, Activity recognition, Smartwatch, Affinity propagation, Clustering

1 Introduction

Today’s economy faces an increasing demand for

products improving one’s well-being and maximising

physical and intellectual performance [6]. The aim of

this project named Stamina is to improve users' health

and performance by tackling a habit at the heart of their

daily lives: coffee drinking. Stamina is a system which

monitors and correlates coffee intakes, sleep patterns

and daily activities to output to the end users whether

or not they could drink a cup of coffee to optimise their

sleep and activities. Stamina tracks the activities of its

users through a mobile application analysing the data

collected from the smartwatch’s sensors and the

smartphone’s GPS localisation. The mobile

application, called Staminapp, is compatible with

smartwatches and smartphones with Android

operating systems 5.0 or higher.

The design of Stamina is divided into three parts: the

Android mobile application, the webserver and

database, and the back-end machine learning

program. This report explores the following topics:

● The selection process of a clustering

algorithm adapted for the detection of

patterns between multiple days, in order to

determine various predictions according to

the predicted type of day.

● The detection of daily activities with the

mobile application Staminapp through the

smartwatch sensors and the GPS capabilities

of the smartphone. These activities can be

sleeping, waking up, drinking coffee,

performing a physical activity or entering

coffee zones (a radius of 40 meters around

the user’s favourite coffee shop or place).

● The development of a secured webserver and

database communicating with Staminapp.

This report first summarises the related work done in

the coffee/sleep management area. Then, the facts

and hypotheses Stamina is based on are stated.

Afterwards the designed system is explored by

describing its different components and justifying all

design choices. Finally, the experimental procedure

used to test Stamina is summarised and the obtained

results are discussed together with their associated

issues.

2 Related work

In the past decade, a lot of research focused on

merging smartphone and smartwatch sensors data to

detect the users’ daily habits [1] [2] [3]. Classification

algorithms such as the Support Vector Machines have

been widely used to differentiate many real life

activities from the smartwatch accelerometer and

gyroscope sensors’ data [4] [5]. Physical activities

such as running, biking, walking, seating, and standing

or even more complex activities such as drinking coffee

can be detected through wearable device sensors [5].

Although the activity detection implemented in Stamina

is relatively simple and does not include any

classification algorithm (see part 4.3), it is definitely

possible to enhance Stamina by implementing

machine learning techniques for activity recognition.

However, this project focused on correlating coffee

intake with daily habits and sleeping patterns using

machine learning. In particular, very little published

research exists today in this domain.

Three similar products exist on the market: UPCofee

by Jawbone, Sen.se [10] and Caffeine Timezone 2 [8].

Only UPCoffee [9] uses analytics but no information on

the algorithms used is currently available. Caffeine

Timezone 2 has been developed by Frank E. Ritter and

Kuo-Chuan (Martin) Yeh from Pennsylvania State

University [8]. This mobile application defines sleep

zones in which the user will be able to sleep, and active

zones where the user is stimulated by coffee. Caffeine

timezone 2 does not monitor sleeping patterns or

activities automatically. The caffeine absorption and

elimination models underlying the application are open

source. The sleep zone and the active zone thresholds

can be modified manually by the user. Caffeine levels

are calculated each second and stored in a SQLite

database. The evolution of vascular caffeine levels of

the user is plotted each time the application is

launched. According to the pharmacodynamics model

used in Caffeine Timezone 2, caffeine elimination

follows a nonlinear exponential equation shown below

in equation (1) [8]. The caffeine calculations in Stamina

is based on a similar equation.

(1) : 𝐶(𝑡) = 𝐶0 𝑒𝑥𝑝(−
𝑡

𝑇
),

where 𝐶0 and 𝑇 corresponds respectively to the

average caffeine quantity in a cup of coffee and to the

caffeine elimination half-life.

The following table (Table 1) summarises the features

of each of the previously stated similar existing

products. Note also that Sen.se and UP coffee require

extra devices, whereas Stamina focused on providing

a solution using only an Android smartphone and

smartwatch, hence being more affordable.

Table 1: Features proposed by existing similar

products

3 Facts and Hypotheses

Before describing Stamina any further, it is important to

understand the underlying facts and hypotheses used

to develop the project. There are mainly four medical

facts Stamina is based on. First, each individual reacts

differently to caffeine [18][22]. This highlights the need

for a personalised coffee monitoring system such as

Stamina. Secondly, the consumption of coffee (with

caffeine) negatively influences the sleep of the user

[18][19][20][21], suggesting that coffee should only be

drunk after determining whether or not the sleep is

compromised. Drinking coffee before a physical activity

apparently enhances the physical performance of the

person [18], which appears as a good thing. Drinking

coffee is also considered healthy [23], as long as it

does not deteriorate the sleep quality.

Concerning the assumptions, there are also four of

them. First, it is assumed the sleep quality mainly

depends on the consumption of coffee and not on other

factors such as stress or drugs. Second, the users are

assumed not to be sleeping or having poor sleep

quality if they are moving while sleeping. This

assumption allows to determine a sleeping quality

percentage which is needed for this project. Days with

similar wake up times and sleep durations are

assumed to have similar physical activity times (if any)

and sleep times. Finally, an obvious but necessary

assumption is that the users are expected to wear their

smartwatch most of the time and to always drink with

the hand on which their smartwatch is attached. This

allows Staminapp to detect the user's’ activities at all

time, including the coffee drinking action.

4 System design

As explained in the introduction, Stamina is divided into

three parts: the mobile front-end side, the remote

server and database, and the machine learning

program. Each part is described, justified and

evaluated in the following sections.

4.1 Mobile part: Staminapp

The front-end consists of Staminapp, an Android

application deployed on both smartphone and

smartwatch. It is developed using Android Studio 2.0

with Java 7 because of the familiarity with Android

development. It is compatible with Android operating

system 5.0 and higher, which fully support Android

smartwatches. The mobile part has two objectives, the

first is to detect and confirm real life activities of the

user, and the second is to exchange this information

with the remote server to obtain useful information and

suggestions related to the user’s coffee consumption.

4.1.1 Detecting and uploading real life activities

The mobile application uses the GPS capabilities of the

smartphone as well as the linear acceleration and

gyroscope integrated sensors of the smartwatch to

detect movements associated to the user’s real life

activities, according to the following conditions:
● Go to sleep movement

The smartwatch’s linear acceleration

decreases significantly in the last 30

minutes; The current time must match a

meaningful sleep time.

● Wake up movement

The smartwatch’s linear acceleration

increases significantly in the last 30 minutes;

The current time must match a meaningful

wake up time.

● Sleep quality

While sleeping, each time the smartwatch’s

linear acceleration changes from zero with a

minimum increase/decrease of 0.2 𝑐𝑚. 𝑠−2,

the user is moving either because he is in a

light sleep phase or is simply not sleeping.

Each time this occurs, the sleep quality

percentage is decreased by 1%. The current

time has to be after the sleep movement and

before the detection of the wake up

movement.

● Physical activity movement

The smartwatch’s linear acceleration

reaches a high threshold on any of the three

axes more than four times in 10 minutes.

The threshold was experimentally found to

be 90𝑐𝑚. 𝑠−2.

● Drinking movement

The smartwatch’s linear acceleration and

gyroscope data during the last 10 minutes

contain a similar pattern within a margin of

error according to a experimentally

predefined drinking model with a trial and

error method.

● Coffee shop

The smartphone’s GPS coordinates are

contained in a circular area with radius 40m

centered around the GPS location of the

coffee place. This area is called a coffee

zone; This event is triggered each 3 hours if

the user is in the same coffee place and is

not sleeping.

Regarding the physical activity and drinking movement

detections, these are notified to the user who has to

confirm them through interactive notifications, since

these could simply be other unrelated events such as

drinking water.

The linear acceleration is chosen to be used in most of

the cases as it is straightforward to understand and to

interpret its data. This type of sensor is similar to an

accelerometer except that constant forces such as

gravity are not present in the 3 dimensional data. On

the other hand, the gyroscope is used to detect the

drinking movement as the data obtained from the linear

acceleration sensor are not sufficient to accurately

detect a drinking movement.

After testing out the application for longer times (see

part 5), the battery life was found to be terrible,

especially on the smartwatch. To be battery efficient,

Staminapp uses two techniques respectively for the

smartphone and the smartwatch. On the smartphone,

as the GPS is the power-hungry component, it is

important to minimise its use with the lowest accuracy

to reduce the battery usage. Staminapp acquires the

GPS location of the user only each minute and only if

the GPS detects that the user moves more than 20m.

This makes the GPS active only each minute keeping

the accuracy to the bare minimum, hence enhancing

the battery life of the smartphone.

On the smartwatch, the Staminapp service runs in the

background and drains the battery in just a few minutes

by constantly polling information from the sensors,

using the main system on chip (SOC). In fact, the main

SOC is extremely power hungry and is not designed to

stay “awake” all the time. To fix this, the Batching

technique was used. It basically stores the sensors’

events in a shared hardware FIFO (First Input First

Output). This technique is programmed such that the

data generated by the integrated sensors are stored in

this low-energy FIFO and the SOC wakes up from its

sleep state only every 10 minutes to gather the 10

minutes long data and analyse it. Whilst being battery

efficient, this last technique unfortunately brings a

movement detection delay which can be up to 10

minutes. To mitigate the inconvenience of this delay,

the notification asking the user to confirm an event also

contains a time of when that event occurred, which

could potentially help the user recall the last drunk

coffee for example.

Concerning the user location feature of Staminapp,

GPS coordinates and names of public coffee zones

such as Starbucks are currently hard coded, but should

ideally be automatically retrieved through the Google

Maps API. Similarly, user-defined coffee zones are

currently hardcoded in the application but should

ideally be selectable on the map provided by

Staminapp.

4.1.2 Server communication and notification

Once any of these events is detected and confirmed,

Staminapp automatically uploads the event details

together with a timestamp and a session cookie

identifying the user to the remote server. This is done

over a secure HTTPS link with a POST request.

Depending on the event, different responses are

obtained, each triggering different actions described in

the table below (Table 2).

Table 2: Table of the events uploaded, responses

received and corresponding actions triggered

Note that all these exchanges are explained in more

details in the overview technical video of Stamina [31].

Since the main focus of the project was to design a

background real life activity detector showing simple

but useful information and suggestions to the user, not

many resources were invested in developing the user

interface. However, even though not necessarily

appealing to the eye, the developed mobile application

still provide all the functionalities described above.

4.2 Back end of Stamina: server

The back-end of Stamina is essentially an online

centralised nodeJS webserver linked to a mysql

database and to a python2.7 interpreter used to

execute the machine learning scripts. The following

section describes and justifies all server related

choices.

4.2.1 Server model

The back-end part of Stamina is built around a remote

server, where the client is the mobile application

Staminapp. Initially, processing and storing the data

locally in the mobile application was considered as an

option. In fact, this structure provides both offline

access and privacy, but also eliminates the need for

network communication. The service availability can’t

be compromised and the battery consumption is

reduced thanks to the absence of internet connection.

However, this idea was quickly discarded since offline

data storage and authentication is generally

recognised as insecure especially when storing data

belonging to others (i.e. machine learning might need

data from other users). Therefore, since security is the

main concern in applications handling medical data

[12], storing and processing data on the server while

the machine learning results are only presented to the

client was considered instead. In this way, securities

threats can be reduced and the application becomes

more portable and compatible. However, these

improvements are obtained at the expense of offline

access, bandwidth usage and battery life.

As a result, since this medical application requires

secure authentication and data storage while

minimising bandwidth usage and allowing offline

access, a balanced or hybrid server-client model is

preferred. To achieve this the client needs to filter and

process the raw data obtained from the user input and

hardware sensors into compressed packages only

containing relevant data for machine learning purposes

(as highlighted in the previous section). Then on the

server, these packages can be stored and organised

into a database where machine learning algorithms

can readily access them to send relevant suggestions

back to the client.

https://www.dropbox.com/s/essxtrspvrxs852/video.mp4?dl=0

4.2.2 Database design

In order to store data in an organised and accessible

way from the server, a database is required. In

particular, there are two different typologies of data

storage: relational (SQL) and non-relational (NoSQL)

[15] [16]. For this project data stored in the database

need to be regularly accessed by the machine learning

algorithms. Therefore, to facilitate the insertion and

selection of data in the system, relational databases

are preferred since they can be easily accessed using

SQL commands. Moreover, given the limited amount

of time to design the system, the theoretically

obtainable increase in storage efficiency from

designing a personalised NoSQL database is not

achievable in practice [16]. Hence, a relational

database is used for storing users’ data. Specifically,

MySQL is chosen since being optimised for web

server.

4.2.3 Web framework choice

There exist numerous web frameworks to develop a

web server, which can be divided based on the

programming language used. The following table

summarises the most popular web frameworks for

different programming languages (Table 3):

Table 3: Most popular web frameworks

Overall, these above listed frameworks are all well

documented with a solid user base and exhaustive

range of functionalities (i.e. request/response handler,

https, cryptography, etc.). Therefore, the main

discriminators are the programming language and

performance.
Now, since the machine learning algorithms are

decided to be developed in Python mainly because of

specific libraries, the obvious choice would be a Python

framework (i.e. web2py, Django, etc.). However, since

learning a completely new framework would

considerably extend the project’s development time,

the more familiar Node.js framework is chosen instead.
Node.js together with the Express.js module provides

all needed functionalities for the project including

secure client-server communication with SSL (https.js

module), data/credentials encryption with AES-512

and SHA-512 respectively [13] (crypto.js module [14])

and python script inclusion for machine learning

algorithms (python-shell.js module). Furthermore,

since running on the V8 JavaScript Engine and

because of its non-blocking event driven structure,

Node.js is currently one of the most performant server-

side environment especially for high levels of

concurrent connections.

4.2.4 Stress testing
In order to ensure the server’s ability to successfully

handle concurrent connections, an HTTP/HTTPS

stress tester named siege is used [17]. Given a specific

HTTP/HTTPS request, this tool sieges the target

server with a specified number of concurrent users and

reports the percentage of successful transactions. The

performance of the server under stress is hence done

with the following shell command:

siege –cN –t10s https://localhost:3000/insert POST

action=coffee&time=123456789, where -c is the number

of concurrent users N, and –t is the amount of time

the test runs for.

This request was chosen since it uses nearly all

available functionalities offered by the server, including

database read/write operations and machine learning

processing using the python module. Executing this

command for different values of N, the threshold below

which the percentage of successful transactions

constantly stays at 100% is determined to be around

120. Further analysis showed any transaction failure

above this threshold is caused by the python module.

In fact, other requests not involving the Python

machine learning program can withstand up to 10,000

concurrent users. The server is thus able to run with up

to 120 active concurrent users. However, in order to

accommodate a greater user-base, the machine

learning integration (the python module specifically)

will have to be redesigned. A possibility would be to

compile the python code in JavaScript directly rather

than interpreting it at run time.

4.3 Back end: Machine learning program

4.3.1 Design overview
In order to give a recommendation on the caffeine

intake, the vascular caffeine level is estimated by the

python module given the previous caffeine intakes of

the current day, using the pharmacodynamics model

described by the equation (1). The clustering

https://localhost:3000/insert
https://localhost:3000/insert

algorithms enable to tailor generic caffeine models to

the user’s daily habits. The python program detects

similarities between different days and clusters them

according to the occurrence of a physical activity,

similarities in coffee intakes, wake up and sleep time.

We assume that for each type of day, or cluster, the

caffeine level at sleep time will have a different impact

on sleep quality. The clustering algorithm is

implemented in python due to its productivity and to the

large variety of accessible machine learning libraries.

Although the performance of Python is not as good as

lower level languages such as C/C++, it is more than

sufficient for our purpose. The scikit-learn library is

used to implement the clustering algorithms because

of its very detailed documentation and because of the

wide range of clustering algorithms offered [11].

Due to the lack of research material about applying

machine learning to detect patterns in daily habits,

determining the best clustering algorithm for this

specific purpose required testing different algorithms.

In addition, a small sample data set containing entries

for a month was built from scratch due to the absence

of an open source database related to the effect of

coffee consumption on sleep and activity. The dataset

contains the following information for each day: the

different times of coffee intakes, the sleep time and the

wake up time, the time of a physical activity and the

sleep quality. Note that all these times are recorded in

epoch time standard.

4.3.2 Evaluation of clustering algorithms
Since clustering uses unsupervised algorithms, it is

less straightforward to evaluate them than evaluating

supervised algorithms. In order to compare algorithms,

it is necessary to establish predictions on the

similarities between members of the same cluster and

verify which algorithm best satisfies these. The Python

program includes a function that classifies days in the

following categories: early or late wake up, early or late

sleep time, long or short sleep duration and occurrence

or not of a physical activity. The coherence of the

clustering is measured by comparing the data set

contained in each cluster to the predicted classification.

Because we believe a type of day depends mainly on

the wake up time and sleep duration of the user, a

greater weighting was assigned to these two

parameters whilst the sleep time and physical activity

have lower weightings. This means the clustering

algorithm will emphasize the differences in wake up

time and sleep duration for its operation.

The three following clustering algorithms were tested:

K-means [26], Mean Shift [7] and Affinity Propagation

[25]. Unlike the K-Means algorithm, the Affinity

Propagation and Mean Shift algorithms do not require

a predetermined number of clusters [25][11]. With our

data, the Affinity Propagation converges to 5 clusters

whilst the Mean Shift gives 6 clusters. In order to

determine how many clusters were ideal to run the

KMeans, the Silhouette coefficient was taken into

account. The Silhouette coefficient is bounded

between -1 and 1. A coefficient of -1 indicates that the

clusters are incorrect, a coefficient of 1 indicates highly

compact clusters, and a coefficient around 0 indicates

overlapping clusters [25]. In our case, for less than 5

clusters, the Silhouette coefficient was below 10%,

indicating overlapping clusters. Regarding the K-

Means, more than 5 clusters showed overfitting as

more than one cluster contained only one element. The

ideal number of cluster for this algorithm is thus 5. A

screenshot containing a Python console view of the

clusters generated for each algorithm is available in the

zip file provided with the submission of the project (in

the Staminaputations folder).

When comparing the given clusters for the three

algorithms, the most coherent algorithms regarding the

classification we designed above are the Affinity

Propagation and Mean Shift algorithms. For both

algorithms, the data sets contained in each cluster

belonged to the same category (for example “early

wake up, long sleep duration, no activity, early sleep

time”). The Silhouette coefficient for the Affinity

propagation was higher than the one of the Mean Shift.

This might indicate that the ideal number of clusters to

classify days is 5. The Affinity propagation was

therefore implemented since it gave the best results on

our data set.

4.3.3 Evaluation of the back-end output
Once all the days are assigned to a cluster, the

program assigns the most appropriate cluster to the

current day according to its wake-up time and to the

sleep duration of the previous night. In order to

determine the ideal level of caffeine at the expected

sleep time for the current day, the program does the

following. It first finds the closest wake up time and the

closest sleep duration in the previous days to the wake

up time and sleep duration of the current day

respectively. A first list of cluster label(s) is built where

each label corresponds to a day with the closest wake

up time, and another list is similarly created for the

sleep duration. The cluster label appearing the most in

the concatenation of the two lists is the cluster

temporarily assigned to the current day.

The expected sleep time is obtained by averaging the

sleep times in the found cluster. The day with the best

sleep quality in the cluster is used to determine the

targeted level of caffeine when the expected sleep time

occurs for the current day. A custom metric was

designed to measure how accurately the selection of

the most appropriate cluster is performed (refer to the

function in the code get_accuracy).

5 Experimental setup and results

Stamina is currently working with the back-end running

at https://www.projectstamina-scutis.rhcloud.com/ and

the Android mobile application installed on request.

The first experiment to test the system as a whole was

to replace the automatic detection of real life activity

movements with explicit buttons in Staminapp. Each

button triggers the rest of the system including the

notifications and server requests. All the functionalities

worked flawlessly and we switched back the real

movement detection on.

The next step was to test it out for a few days. One of

us hence used Stamina during three days in order to

determine logical bugs, user interface issues and more

practically to test out the battery life. Indeed, the main

issue found was the battery life of the smartwatch

which was drained in about 45 minutes. As previously

explained, this was due to the fact that the sensors data

were gathered by the main SoC (CPU) at a rate of 5

samples per second. The SoC could not go in its sleep

state and was thus consuming a lot of power. The fix

was to implement the batching technique (see part

4.1.1 for more details). Other than this, all the network

communication, notifications and error handling

worked as intended. A design flaw concerning the

coffee zone notification was found. If the users stay in

the same coffee place, Staminapp notifies them each

three hours that they could drink a coffee. However, as

the user-defined coffee place could be home,

Staminapp should disable this feature whilst the user is

asleep so the user is not woken up. As we did not have

much time, we also added manually 30 days of data in

the database in order to verify the machine learning

was working as expected. The results obtained were

quite coherent with the previously defined days.

Finally, the Android application Staminapp was

provided to a civil engineering student with the moto

360 smartwatch. He used it during two days with some

30 days data we created with him according to his

usual habits. We also hardcoded the places he usually

goes to drink a coffee. Overall, he was satisfied with

the experience, especially about the suggestion to stop

drinking coffee and the GPS feature suggesting him

that he could drink a coffee. However, the drinking

movement detection was a bit frustrating as it was

triggered even if he was simply touching his face with

his left hand.

6 Conclusion

To conclude, a production-ready system was

successfully developed to manage the coffee/sleep

schedule of its users: Staminapp. The front-end

consists of an Android mobile application deployed on

both smartphone and smartwatch while the back-end

relies on a centralised nodeJS webserver with a

MySQL database and a python2.7 interpreter for

machine learning algorithms (the source codes are all

on GitHub [28][29][30]. Overall, this application

implements the core functionalities identified in the

specifications including detection of sleep, coffee

intake and physical activity, secure transfer and

storage of these data to a remote database and also

delivery of personalised coffee intake suggestions

through machine learning.

However, Staminapp is far from being exhaustive in

terms of functionalities and optimal regarding its

suggestions. In particular, a number of future

improvements are worth considering. First, the user

interface is currently quite rigid and could be reworked

into something more intuitive, dynamic and appealing

to the users with additional features (graphs, statistics,

fun facts, etc.). The coffee drinking action or physical

activity recognition could also be improved in terms of

reliability through the design of mobile local machine

learning. Then, the coffee intake suggestions could be

further personalised by adding to the machine learning

algorithm additional parameters such as age, medical

conditions (smoking, etc.) or cross-user patterns.

Finally, to ensure customer lock-in a social aspect

could be added to the application allowing users to

share their position or coffee drinking habit.

https://www.projectstamina-scutis.rhcloud.com/

7 Bibliography

[1] O. D. Incel, M. Kose, and C. Ersoy, “A review and

taxonomy of activity recognition on mobile phones”,

BioNanoScience, vol. 3, no. 2, pp. 145– 171, 2013.
[2] G. Bieber, N. Fernholz, and M. Gaerber, “Smart watches

for home interaction services,” in HCI International 2013-

Posters Extended Abstracts. Springer, 2013, pp. 293–297.
[3] S. G. Trost, Y. Zheng, and W.-K. Wong, “Machine

learning for activity recognition: hip versus wrist data,”

Physiological measurement, vol. 35, no. 11, p. 2183, 2014..
[4] S. Chernbumroong, A. S. Atkins, and H. Yu, “Activity

classification using a single wrist-worn accelerometer,” in

Software, Knowledge Information, Industrial Management

and Applications (SKIMA), 2011 5th International

Conference on. IEEE, 2011, pp. 1
[5] M. Shoaib, S. Bosch, H. Scholten, P. J. M. Havinga and

O. D. Incel, "Towards detection of bad habits by fusing

smartphone and smartwatch sensors," Pervasive Computing

and Communication Workshops (PerCom Workshops), 2015

IEEE International Conference on, St. Louis, MO, 2015, pp.

591-596.
[6] Daniel Garrett,William H. Molloie,PWC,The global

mHealth market opportunity and sustainable reimbursement

models,2015
[7] D. Comaniciu and P. Meer, "Mean shift: a robust

approach toward feature space analysis," in IEEE

Transactions on Pattern Analysis and Machine Intelligence,

vol. 24, no. 5, pp. 603-619, May 2002. doi:

10.1109/34.1000236
[8] Ritter, F. E.,Yeh, K.-C. M. (2011). Modeling

pharmacokinetics and pharmacodynamics on a mobile

device to help
caffeine users. In Augmented Cognition International

Conference 2011, FAC 2011, HCII 2011, LNAI 6780, 528-

535.
Springer-Verlag: Berlin Heidelberg.
[9] iTunes, UP Coffee from Jawbone, 2015,

https://itunes.apple.com/fr/app/upcoffee/id828031130?mt=8
[10] Sen.se, The meaning of life, Manage Coffee

Consumption, 2015, https://sen.se/store/apps/coffee/
[11] Scikit Learn, sklearn.cluster.AffinityPropagation, 2014,

http://ww2.scikitlearn.org/stable/modules/generated/sklearn.

cluster.AffinityPropagation.html

[12] Information Commissioner’s Office. Privacy in mobile

apps: Guidance for app developers. (Dec 2013),

https://ico.org.uk/media/for-

organisations/documents/1596/privacy-in-mobile-apps-dp-

guidance.pdf
[13] Christoph Hartmann. Encrypt and decrypt content with

Nodejs. http://lollyrock.com/articles/nodejs-encryption/

[14] Node.js Foundation. Node.js v5.7.0 Crypto

Documentation, https://nodejs.org/api/crypto.html
[15] O.S. Tezer. Understanding SQL and No SQL Databases

and Different Database Models. (Feb 2014),

https://www.digitalocean.com/community/tutorials/understan

ding-sql-and-nosql-databases-and-different-database-

models
[16] Craig Buckler. SQL vs NoSQL: The Differences. (Sep

2015), http://www.sitepoint.com/sql-vs-nosql-differences/
[17] Jeffrey Fulmer, siege - An HTTP/HTTPS stress tester,

http://linux.die.net/man/1/siege

[18] Ian Clark, H. P. Coffee, Caffeine, and Sleep: A

Systematic Review of Epidemiological Studies and

Randomized Controlled Trials, 2016
[19] Hindmarch, U. R. A naturalistic investigation of the

effects of day-long consumption of tea, coffee and water on

alertness, sleep onset and sleep quality, 2000.
[20] Hussam Sabba, L. S. The effects of coffee consumption

on sleep and melatonin secretion, 2002.
[21] Micha Levy, E. Z.-K. Caffeine metabolism and coffee-

attributed sleep disturbances, 1993.
[22] Denis M. Grant.Bing K. Tang, W. K. Variability in

caffeine metabolism, 1983.
[23] Schilter, B, HolzhÄUser, D, Cavin, C. Health benefits of

coffee. 19ème Colloque Scientifique International sur le

Café, Trieste,May 2001 pp. 1-9.
[24] Jean-Louis G, von Gizycki H, Zizi F, Fookson J,

Spielman A, Nunes J, Fullilove R, Taub H. Determination of

sleep and wakefulness with the actigraph data analysis

software (ADAS). 1996 Nov;19(9) 739-743. PMID: 9122562.
[25] Scikit Learn, 2014, sklearn.cluster, http://scikit-

learn.org/stable/modules/clustering.html

[26] Brendan J. Frey, Delbert Dueck, Clustering by Passing

Messages Between Data Points, Science 16 Feb 2007, Vol.

315, Issue 5814, pp. 972-976, DOI:

10.1126/science.1136800,

http://science.sciencemag.org/content/315/5814/972
[27] Anil K. Jain, Data clustering: 50 years beyond K-means,

Pattern Recognition Letters, Volume 31, Issue 8, 1 June

2010, Pages 651-666, ISSN 0167-8655,

http://www.sciencedirect.com/science/article/pii/S016786550

9002323

[28] Github link to Staminaputations (machine learning and

data processing program),

https://github.com/qdm12/Staminaputations
[29] Github link to Staminapp (Android mobile application),

https://github.com/qdm12/Staminapp
[30] Github link to ProjectStamina (Webserver and

database), https://github.com/scutis/projectStamina

[31] Dropbox link to Technical overview video home made,

https://www.dropbox.com/s/essxtrspvrxs852/video.mp4?dl=0

https://itunes.apple.com/fr/app/upcoffee/id828031130?mt=8
https://sen.se/store/apps/coffee/
http://scikitlearn.org/stable/modules/generated/sklearn.cluster.AffinityPropagation.html
https://ico.org.uk/media/for-organisations/documents/1596/privacy-in-mobile-apps-dp-guidance.pdf
https://ico.org.uk/media/for-organisations/documents/1596/privacy-in-mobile-apps-dp-guidance.pdf
https://nodejs.org/api/crypto.html
https://nodejs.org/api/crypto.html
https://www.digitalocean.com/community/tutorials/understanding-sql-and-nosql-databases-and-different-database-models
https://www.digitalocean.com/community/tutorials/understanding-sql-and-nosql-databases-and-different-database-models
http://www.sitepoint.com/sql-vs-nosql-differences/
http://linux.die.net/man/1/siege
http://linux.die.net/man/1/siege
http://scikit-learn.org/stable/modules/clustering.html
http://science.sciencemag.org/content/315/5814/972
http://science.sciencemag.org/content/315/5814/972
http://www.sciencedirect.com/science/article/pii/S0167865509002323
http://www.sciencedirect.com/science/article/pii/S0167865509002323
http://www.sciencedirect.com/science/article/pii/S0167865509002323
https://github.com/qdm12/Staminaputations
https://github.com/qdm12/Staminapp
https://github.com/qdm12/Staminapp
https://github.com/scutis/projectStamina
https://github.com/scutis/projectStamina
https://www.dropbox.com/s/essxtrspvrxs852/video.mp4?dl=0
https://www.dropbox.com/s/essxtrspvrxs852/video.mp4?dl=0

