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 Abstract. Coffee drinking allows to reduce tiredness and is widely used in our society. In particular, the 

caffeine contained in coffee influences the quality of sleep of coffee drinkers. However, since each person reacts 

differently to caffeine, there is no rule of thumb to determine the optimal coffee intake schedule in order to maximise 

performance during the day while ensuring high quality sleep at night. Stamina is a solution providing this missing 

information to the coffee drinker, by monitoring and analysing the activity of the user over several days. It uses the 

sensors of both an Android smartphone and smartwatch to analyse the activity of the users, such as when they wake 

up, go to sleep or drink coffee. A remote server stores these data and analyses them with a clustering machine learning 

technique to provide suggestions to the users through their mobile devices about their daily coffee consumption. 
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1 Introduction 
 

Today’s economy faces an increasing demand for 

products improving one’s well-being and maximising 

physical and intellectual performance [6]. The aim of 

this project named Stamina is to improve users' health 

and performance by tackling a habit at the heart of their 

daily lives: coffee drinking. Stamina is a system which 

monitors and correlates coffee intakes, sleep patterns 

and daily activities to output to the end users whether 

or not they could drink a cup of coffee to optimise their 

sleep and activities. Stamina tracks the activities of its 

users through a mobile application analysing the data 

collected from the smartwatch’s sensors and the 

smartphone’s GPS localisation. The mobile 

application, called Staminapp, is compatible with 

smartwatches and smartphones with Android 

operating systems 5.0 or higher. 

  
The design of Stamina is divided into three parts: the 

Android mobile application, the webserver and 

database, and the back-end machine learning 

program. This report explores the following topics: 

 

● The selection process of a clustering 

algorithm adapted for the detection of 

patterns between multiple days, in order to 

determine various predictions according to 

the predicted type of day. 

● The detection of daily activities with the 

mobile application Staminapp through the 

smartwatch sensors and the GPS capabilities 

of the smartphone. These activities can be 

sleeping, waking up, drinking coffee, 

performing a physical activity or entering 

coffee zones (a radius of 40 meters around 

the user’s favourite coffee shop or place). 

● The development of a secured webserver and 

database communicating with Staminapp.  

 

This report first summarises the related work done in 

the coffee/sleep management area. Then, the facts 

and hypotheses Stamina is based on are stated. 

Afterwards the designed system is explored by 

describing its different components and justifying all 

design choices. Finally, the experimental procedure 

used to test Stamina is summarised and the obtained 

results are discussed together with their associated 

issues. 

 



2 Related work 
 

In the past decade, a lot of research focused on 

merging smartphone and smartwatch sensors data to 

detect the users’ daily habits [1] [2] [3]. Classification 

algorithms such as the Support Vector Machines have 

been widely used to differentiate many real life 

activities from the smartwatch accelerometer and 

gyroscope sensors’ data [4] [5].  Physical activities 

such as running, biking, walking, seating, and standing 

or even more complex activities such as drinking coffee 

can be detected through wearable device sensors [5].  

Although the activity detection implemented in Stamina 

is relatively simple and does not include any 

classification algorithm (see part 4.3), it is definitely 

possible to enhance Stamina by implementing 

machine learning techniques for activity recognition. 

However, this project focused on correlating coffee 

intake with daily habits and sleeping patterns using 

machine learning. In particular, very little published 

research exists today in this domain.   

 

 

Three similar products exist on the market: UPCofee 

by Jawbone, Sen.se [10] and Caffeine Timezone 2 [8]. 

Only UPCoffee [9] uses analytics but no information on 

the algorithms used is currently available.  Caffeine 

Timezone 2 has been developed by Frank E. Ritter and 

Kuo-Chuan (Martin) Yeh from Pennsylvania State 

University [8]. This mobile application defines sleep 

zones in which the user will be able to sleep, and active 

zones where the user is stimulated by coffee. Caffeine 

timezone 2 does not monitor sleeping patterns or 

activities automatically. The caffeine absorption and 

elimination models underlying the application are open 

source. The sleep zone and the active zone thresholds 

can be modified manually by the user. Caffeine levels 

are calculated each second and stored in a SQLite 

database. The evolution of vascular caffeine levels of 

the user is plotted each time the application is 

launched. According to the pharmacodynamics model 

used in Caffeine Timezone 2, caffeine elimination 

follows a nonlinear exponential equation shown below 

in equation (1) [8]. The caffeine calculations in Stamina 

is based on a similar equation. 

 

(1) :  𝐶(𝑡) = 𝐶0 𝑒𝑥𝑝(−
𝑡

𝑇
), 

 

where 𝐶0 and  𝑇 corresponds respectively to the 

average caffeine quantity in a cup of coffee and to the 

caffeine elimination half-life. 

 

The following table (Table 1) summarises the features 

of each of the previously stated similar existing 

products. Note also that Sen.se and UP coffee require 

extra devices, whereas Stamina focused on providing 

a solution using only an Android smartphone and 

smartwatch, hence being more affordable. 
 

 

Table 1: Features proposed by existing similar 

products 

 

 
 

3 Facts and Hypotheses 
 

Before describing Stamina any further, it is important to 

understand the underlying facts and hypotheses used 

to develop the project. There are mainly four medical 

facts Stamina is based on. First, each individual reacts 

differently to caffeine [18][22]. This highlights the need 

for a personalised coffee monitoring system such as 

Stamina. Secondly, the consumption of coffee (with 

caffeine) negatively influences the sleep of the user 

[18][19][20][21], suggesting that coffee should only be 

drunk after determining whether or not the sleep is 

compromised. Drinking coffee before a physical activity 

apparently enhances the physical performance of the 

person [18], which appears as a good thing. Drinking 

coffee is also considered healthy [23], as long as it 

does not deteriorate the sleep quality.  

 

Concerning the assumptions, there are also four of 

them. First, it is assumed the sleep quality mainly 

depends on the consumption of coffee and not on other 

factors such as stress or drugs. Second, the users are 

assumed not to be sleeping or having poor sleep 

quality if they are moving while sleeping. This 

assumption allows to determine a sleeping quality 

percentage which is needed for this project. Days with 

similar wake up times and sleep durations are 

assumed to have similar physical activity times (if any) 

and sleep times. Finally, an obvious but necessary 

assumption is that the users are expected to wear their 

smartwatch most of the time and to always drink with 

the hand on which their smartwatch is attached. This 



allows Staminapp to detect the user's’ activities at all 

time, including the coffee drinking action. 

 

 

4 System design 
 

As explained in the introduction, Stamina is divided into 

three parts: the mobile front-end side, the remote 

server and database, and the machine learning 

program. Each part is described, justified and 

evaluated in the following sections. 
 

 

4.1 Mobile part: Staminapp 

The front-end consists of Staminapp, an Android 

application deployed on both smartphone and 

smartwatch. It is developed using Android Studio 2.0 

with Java 7 because of the familiarity with Android 

development. It is compatible with Android operating 

system 5.0 and higher, which fully support Android 

smartwatches. The mobile part has two objectives, the 

first is to detect and confirm real life activities of the 

user, and the second is to exchange this information 

with the remote server to obtain useful information and 

suggestions related to the user’s coffee consumption. 
 

4.1.1      Detecting and uploading real life activities 

The mobile application uses the GPS capabilities of the 

smartphone as well as the linear acceleration and 

gyroscope integrated sensors of the smartwatch to 

detect movements associated to the user’s real life 

activities, according to the following conditions: 
● Go to sleep movement 

The smartwatch’s linear acceleration 

decreases significantly in the last 30 

minutes; The current time must match a 

meaningful sleep time. 

● Wake up movement 

The smartwatch’s linear acceleration 

increases significantly in the last 30 minutes; 

The current time must match a meaningful 

wake up time. 

● Sleep quality 

While sleeping, each time the smartwatch’s 

linear acceleration changes from zero with a 

minimum increase/decrease of 0.2 𝑐𝑚. 𝑠−2, 

the user is moving either because he is in a 

light sleep phase or is simply not sleeping. 

Each time this occurs, the sleep quality 

percentage is decreased by 1%. The current 

time has to be after the sleep movement and 

before the detection of the wake up 

movement. 

● Physical activity movement 

The smartwatch’s linear acceleration 

reaches a high threshold on any of the three 

axes more than four times in 10 minutes. 

The threshold was experimentally found to 

be 90𝑐𝑚. 𝑠−2. 

● Drinking movement 

The smartwatch’s linear acceleration and 

gyroscope data during the last 10 minutes 

contain a similar pattern within a margin of 

error according to a experimentally 

predefined drinking model with a trial and 

error method. 

● Coffee shop 

The smartphone’s GPS coordinates are 

contained in a circular area with radius 40m 

centered around the GPS location of the 

coffee place. This area is called a coffee 

zone; This event is triggered each 3 hours if 

the user is in the same coffee place and is 

not sleeping. 

 

Regarding the physical activity and drinking movement 

detections, these are notified to the user who has to 

confirm them through interactive notifications, since 

these could simply be other unrelated events such as 

drinking water. 

 

The linear acceleration is chosen to be used in most of 

the cases as it is straightforward to understand and to 

interpret its data. This type of sensor is similar to an 

accelerometer except that constant forces such as 

gravity are not present in the 3 dimensional data. On 

the other hand, the gyroscope is used to detect the 

drinking movement as the data obtained from the linear 

acceleration sensor are not sufficient to accurately 

detect a drinking movement. 

 

After testing out the application for longer times (see 

part 5), the battery life was found to be terrible, 

especially on the smartwatch. To be battery efficient, 

Staminapp uses two techniques respectively for the 

smartphone and the smartwatch. On the smartphone, 

as the GPS is the power-hungry component, it is 

important to minimise its use with the lowest accuracy 

to reduce the battery usage. Staminapp acquires the 

GPS location of the user only each minute and only if 

the GPS detects that the user moves more than 20m. 

This makes the GPS active only each minute keeping 

the accuracy to the bare minimum, hence enhancing 

the battery life of the smartphone.  

 

On the smartwatch, the Staminapp service runs in the 

background and drains the battery in just a few minutes 



by constantly polling information from the sensors, 

using the main system on chip (SOC). In fact, the main 

SOC is extremely power hungry and is not designed to 

stay “awake” all the time. To fix this, the Batching 

technique was used. It basically stores the sensors’ 

events in a shared hardware FIFO (First Input First 

Output). This technique is programmed such that the 

data generated by the integrated sensors are stored in 

this low-energy FIFO and the SOC wakes up from its 

sleep state only every 10 minutes to gather the 10 

minutes long data and analyse it. Whilst being battery 

efficient, this last technique unfortunately brings a 

movement detection delay which can be up to 10 

minutes. To mitigate the inconvenience of this delay, 

the notification asking the user to confirm an event also 

contains a time of when that event occurred, which 

could potentially help the user recall the last drunk 

coffee for example. 

 

Concerning the user location feature of Staminapp, 

GPS coordinates and names of public coffee zones 

such as Starbucks are currently hard coded, but should 

ideally be automatically retrieved through the Google 

Maps API. Similarly, user-defined coffee zones are 

currently hardcoded in the application but should 

ideally be selectable on the map provided by 

Staminapp. 
 

4.1.2 Server communication and notification 

Once any of these events is detected and confirmed, 

Staminapp automatically uploads the event details 

together with a timestamp and a session cookie 

identifying the user to the remote server. This is done 

over a secure HTTPS link with a POST request. 

Depending on the event, different responses are 

obtained, each triggering different actions described in 

the table below (Table 2). 

Table 2: Table of the events uploaded, responses 

received and corresponding actions triggered 
 

Note that all these exchanges are explained in more 

details in the overview technical video of Stamina [31]. 

Since the main focus of the project was to design a 

background real life activity detector showing simple 

but useful information and suggestions to the user, not 

many resources were invested in developing the user 

interface. However, even though not necessarily 

appealing to the eye, the developed mobile application 

still provide all the functionalities described above. 

 

 

4.2 Back end of Stamina: server 

The back-end of Stamina is essentially an online 

centralised nodeJS webserver linked to a mysql 

database and to a python2.7 interpreter used to 

execute the machine learning scripts. The following 

section describes and justifies all server related 

choices. 
 

4.2.1 Server model 

The back-end part of Stamina is built around a remote 

server, where the client is the mobile application 

Staminapp. Initially, processing and storing the data 

locally in the mobile application was considered as an 

option. In fact, this structure provides both offline 

access and privacy, but also eliminates the need for 

network communication. The service availability can’t 

be compromised and the battery consumption is 

reduced thanks to the absence of internet connection. 

However, this idea was quickly discarded since offline 

data storage and authentication is generally 

recognised as insecure especially when storing data 

belonging to others (i.e. machine learning might need 

data from other users). Therefore, since security is the 

main concern in applications handling medical data 

[12], storing and processing data on the server while 

the machine learning results are only presented to the 

client was considered instead. In this way, securities 

threats can be reduced and the application becomes 

more portable and compatible. However, these 

improvements are obtained at the expense of offline 

access, bandwidth usage and battery life. 

 
As a result, since this medical application requires 

secure authentication and data storage while 

minimising bandwidth usage and allowing offline 

access, a balanced or hybrid server-client model is 

preferred. To achieve this the client needs to filter and 

process the raw data obtained from the user input and 

hardware sensors into compressed packages only 

containing relevant data for machine learning purposes 

(as highlighted in the previous section). Then on the 

server, these packages can be stored and organised 

into a database where machine learning algorithms 

can readily access them to send relevant suggestions 

back to the client.  

 

 

https://www.dropbox.com/s/essxtrspvrxs852/video.mp4?dl=0


4.2.2 Database design 

In order to store data in an organised and accessible 

way from the server, a database is required. In 

particular, there are two different typologies of data 

storage: relational (SQL) and non-relational (NoSQL) 

[15] [16]. For this project data stored in the database 

need to be regularly accessed by the machine learning 

algorithms. Therefore, to facilitate the insertion and 

selection of data in the system, relational databases 

are preferred since they can be easily accessed using 

SQL commands. Moreover, given the limited amount 

of time to design the system, the theoretically 

obtainable increase in storage efficiency from 

designing a personalised NoSQL database is not 

achievable in practice [16]. Hence, a relational 

database is used for storing users’ data. Specifically, 

MySQL is chosen since being optimised for web 

server.  
 

4.2.3 Web framework choice 

There exist numerous web frameworks to develop a 

web server, which can be divided based on the 

programming language used. The following table 

summarises the most popular web frameworks for 

different programming languages (Table 3): 
 

 

 
Table 3: Most popular web frameworks 

 
Overall, these above listed frameworks are all well 

documented with a solid user base and exhaustive 

range of functionalities (i.e. request/response handler, 

https, cryptography, etc.). Therefore, the main 

discriminators are the programming language and 

performance. 
Now, since the machine learning algorithms are 

decided to be developed in Python mainly because of 

specific libraries, the obvious choice would be a Python 

framework (i.e. web2py, Django, etc.). However, since 

learning a completely new framework would 

considerably extend the project’s development time, 

the more familiar Node.js framework is chosen instead. 
Node.js together with the Express.js module provides 

all needed functionalities for the project including 

secure client-server communication with SSL (https.js 

module), data/credentials encryption with AES-512 

and SHA-512 respectively [13] (crypto.js module [14]) 

and python script inclusion for machine learning 

algorithms (python-shell.js module). Furthermore, 

since running on the V8 JavaScript Engine and 

because of its non-blocking event driven structure, 

Node.js is currently one of the most performant server-

side environment especially for high levels of 

concurrent connections. 
 

 

4.2.4 Stress testing 
In order to ensure the server’s ability to successfully 

handle concurrent connections, an HTTP/HTTPS 

stress tester named siege is used [17]. Given a specific 

HTTP/HTTPS request, this tool sieges the target 

server with a specified number of concurrent users and 

reports the percentage of successful transactions. The 

performance of the server under stress is hence done 

with the following shell command: 

siege –cN –t10s https://localhost:3000/insert POST 

action=coffee&time=123456789, where -c is the number 

of concurrent users N, and –t is the amount of time 

the test runs for.  

 
This request was chosen since it uses nearly all 

available functionalities offered by the server, including 

database read/write operations and machine learning 

processing using the python module. Executing this 

command for different values of N, the threshold below 

which the percentage of successful transactions 

constantly stays at 100% is determined to be around 

120. Further analysis showed any transaction failure 

above this threshold is caused by the python module. 

In fact, other requests not involving the Python 

machine learning program can withstand up to 10,000 

concurrent users. The server is thus able to run with up 

to 120 active concurrent users. However, in order to 

accommodate a greater user-base, the machine 

learning integration (the python module specifically) 

will have to be redesigned. A possibility would be to 

compile the python code in JavaScript directly rather 

than interpreting it at run time. 

 

 

 

4.3 Back end: Machine learning program 

 
4.3.1 Design overview 
In order to give a recommendation on the caffeine 

intake, the vascular caffeine level is estimated by the 

python module given the previous caffeine intakes of 

the current day, using the pharmacodynamics model 

described by the equation (1). The clustering 

https://localhost:3000/insert
https://localhost:3000/insert


algorithms enable to tailor generic caffeine models to 

the user’s daily habits. The python program detects 

similarities between different days and clusters them 

according to the occurrence of a physical activity, 

similarities in coffee intakes, wake up and sleep time. 

We assume that for each type of day, or cluster, the 

caffeine level at sleep time will have a different impact 

on sleep quality. The clustering algorithm is 

implemented in python due to its productivity and to the 

large variety of accessible machine learning libraries. 

Although the performance of Python is not as good as 

lower level languages such as C/C++, it is more than 

sufficient for our purpose. The scikit-learn library is 

used to implement the clustering algorithms because 

of its very detailed documentation and because of the 

wide range of clustering algorithms offered [11].    

 
Due to the lack of research material about applying 

machine learning to detect patterns in daily habits, 

determining the best clustering algorithm for this 

specific purpose required testing different algorithms. 

In addition, a small sample data set containing entries 

for a month was built from scratch due to the absence 

of an open source database related to the effect of 

coffee consumption on sleep and activity. The dataset 

contains the following information for each day:  the 

different times of coffee intakes, the sleep time and the 

wake up time, the time of a physical activity and the 

sleep quality. Note that all these times are recorded in 

epoch time standard. 

 

 

4.3.2 Evaluation of clustering algorithms 
Since clustering uses unsupervised algorithms, it is 

less straightforward to evaluate them than evaluating 

supervised algorithms. In order to compare algorithms, 

it is necessary to establish predictions on the 

similarities between members of the same cluster and 

verify which algorithm best satisfies these. The Python 

program includes a function that classifies days in the 

following categories: early or late wake up, early or late 

sleep time, long or short sleep duration and occurrence 

or not of a physical activity. The coherence of the 

clustering is measured by comparing the data set 

contained in each cluster to the predicted classification. 

Because we believe a type of day depends mainly on 

the wake up time and sleep duration of the user, a 

greater weighting was assigned to these two 

parameters whilst the sleep time and physical activity 

have lower weightings. This means the clustering 

algorithm will emphasize the differences in wake up 

time and sleep duration for its operation. 

 

The three following clustering algorithms were tested: 

K-means [26], Mean Shift [7] and Affinity Propagation 

[25]. Unlike the K-Means algorithm, the Affinity 

Propagation and Mean Shift algorithms do not require 

a predetermined number of clusters [25][11]. With our 

data, the Affinity Propagation converges to 5 clusters 

whilst the Mean Shift gives 6 clusters.  In order to 

determine how many clusters were ideal to run the 

KMeans, the Silhouette coefficient was taken into 

account. The Silhouette coefficient is bounded 

between -1 and 1. A coefficient of -1 indicates that the 

clusters are incorrect, a coefficient of 1 indicates highly 

compact clusters, and a coefficient around 0 indicates 

overlapping clusters [25]. In our case, for less than 5 

clusters, the Silhouette coefficient was below 10%, 

indicating overlapping clusters. Regarding the K-

Means, more than 5 clusters showed overfitting as 

more than one cluster contained only one element. The 

ideal number of cluster for this algorithm is thus 5. A 

screenshot containing a Python console view of the 

clusters generated for each algorithm is available in the 

zip file provided with the submission of the project (in 

the Staminaputations folder). 

 
When comparing the given clusters for the three 

algorithms, the most coherent algorithms regarding the 

classification we designed above are the Affinity 

Propagation and Mean Shift algorithms. For both 

algorithms, the data sets contained in each cluster 

belonged to the same category (for example “early 

wake up, long sleep duration, no activity, early sleep 

time”). The Silhouette coefficient for the Affinity 

propagation was higher than the one of the Mean Shift. 

This might indicate that the ideal number of clusters to 

classify days is 5.  The Affinity propagation was 

therefore implemented since it gave the best results on 

our data set.  

 

 
4.3.3 Evaluation of the back-end output 
Once all the days are assigned to a cluster, the 

program assigns the most appropriate cluster to the 

current day according to its wake-up time and to the 

sleep duration of the previous night. In order to 

determine the ideal level of caffeine at the expected 

sleep time for the current day, the program does the 

following. It first finds the closest wake up time and the 

closest sleep duration in the previous days to the wake 

up time and sleep duration of the current day 

respectively. A first list of cluster label(s) is built where 

each label corresponds to a day with the closest wake 

up time, and another list is similarly created for the 

sleep duration. The cluster label appearing the most in 



the concatenation of the two lists is the cluster 

temporarily assigned to the current day.  

 

The expected sleep time is obtained by averaging the 

sleep times in the found cluster. The day with the best 

sleep quality in the cluster is used to determine the 

targeted level of caffeine when the expected sleep time 

occurs for the current day. A custom metric was 

designed to measure how accurately the selection of 

the most appropriate cluster is performed (refer to the 

function in the code get_accuracy). 
 

 

5 Experimental setup and results 
 

Stamina is currently working with the back-end running 

at https://www.projectstamina-scutis.rhcloud.com/ and 

the Android mobile application installed on request. 

The first experiment to test the system as a whole was 

to replace the automatic detection of real life activity 

movements with explicit buttons in Staminapp. Each 

button triggers the rest of the system including the 

notifications and server requests. All the functionalities 

worked flawlessly and we switched back the real 

movement detection on.  

 

The next step was to test it out for a few days. One of 

us hence used Stamina during three days in order to 

determine logical bugs, user interface issues and more 

practically to test out the battery life. Indeed, the main 

issue found was the battery life of the smartwatch 

which was drained in about 45 minutes. As previously 

explained, this was due to the fact that the sensors data 

were gathered by the main SoC (CPU) at a rate of 5 

samples per second. The SoC could not go in its sleep 

state and was thus consuming a lot of power. The fix 

was to implement the batching technique (see part 

4.1.1 for more details). Other than this, all the network 

communication, notifications and error handling 

worked as intended. A design flaw concerning the 

coffee zone notification was found. If the users stay in 

the same coffee place, Staminapp notifies them each 

three hours that they could drink a coffee. However, as 

the user-defined coffee place could be home, 

Staminapp should disable this feature whilst the user is 

asleep so the user is not woken up. As we did not have 

much time, we also added manually 30 days of data in 

the database in order to verify the machine learning 

was working as expected. The results obtained were 

quite coherent with the previously defined days. 

 

Finally, the Android application Staminapp was 

provided to a civil engineering student with the moto 

360 smartwatch. He used it during two days with some 

30 days data we created with him according to his 

usual habits. We also hardcoded the places he usually 

goes to drink a coffee. Overall, he was satisfied with 

the experience, especially about the suggestion to stop 

drinking coffee and the GPS feature suggesting him 

that he could drink a coffee. However, the drinking 

movement detection was a bit frustrating as it was 

triggered even if he was simply touching his face with 

his left hand.  
 

 

6 Conclusion 
 

To conclude, a production-ready system was 

successfully developed to manage the coffee/sleep 

schedule of its users: Staminapp. The front-end 

consists of an Android mobile application deployed on 

both smartphone and smartwatch while the back-end 

relies on a centralised nodeJS webserver with a 

MySQL database and a python2.7 interpreter for 

machine learning algorithms (the source codes are all 

on GitHub [28][29][30]. Overall, this application 

implements the core functionalities identified in the 

specifications including detection of sleep, coffee 

intake and physical activity, secure transfer and 

storage of these data to a remote database and also 

delivery of personalised coffee intake suggestions 

through machine learning. 

 
However, Staminapp is far from being exhaustive in 

terms of functionalities and optimal regarding its 

suggestions. In particular, a number of future 

improvements are worth considering. First, the user 

interface is currently quite rigid and could be reworked 

into something more intuitive, dynamic and appealing 

to the users with additional features (graphs, statistics, 

fun facts, etc.). The coffee drinking action or physical 

activity recognition could also be improved in terms of 

reliability through the design of mobile local machine 

learning. Then, the coffee intake suggestions could be 

further personalised by adding to the machine learning 

algorithm additional parameters such as age, medical 

conditions (smoking, etc.) or cross-user patterns. 

Finally, to ensure customer lock-in a social aspect 

could be added to the application allowing users to 

share their position or coffee drinking habit. 

 

 

 

 

 

 

 

https://www.projectstamina-scutis.rhcloud.com/
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